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Introduction

Summary Network modeling is critical to the study of complex

systems. It enables researchers to examine emergent behavior and related

phenomena arising from local milieu. The mechanism and function of this

local area or micro structures is an area that remains nebulous. Learning

what the underlying patterns are and how they function in real world

representations of complex systems (networks) is critical to the evolution

of scientific tools required for today’s data-saturated environment.

Why is this important?

• Medir [para modelar], predecir y controlar los sistemas complejos,

Albert-László Barabási at CCS17 Cancun, Mexico.

• To answer “questions about the sustainability of modern socio-ecological

system”, Deep Time Frontiers of Ecological Networks, Jennifer A. Dune,

at NetSci 2017, Indianapolis, IN
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Motivation

Internet of Things1 Human Genome2 Brain networks3 World weather 4

1IOT http://iotcentral.io
2Gene banks: identifying relationships between genes, pubgene.com
3Discovering how dynamic brain connections give rise to thoughts and behaviors,

Bassett and Sporns Nature Neuroscience 20, 353364 (2017)
4Prescient questions in climate change tutiempo.net

3

http://iotcentral.io
pubgene.com
tutiempo.net


Thesis Statement

In this thesis,

I investigate the relationship between graph theory and formal language

theory that allows for a Hypererdge Replacement Grammars (HRG) to be

extracted from any connected graph and learn the building blocks of real

world graphs.

I propose, develop and evaluate algorithms that leverage the generating

properties of HRGs to solve problems in graph mining and network

science in general.
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Background and definitions

What is . . .

Network science Network models Hyperedge

Replacement Grammar
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Background

What is . . .

Network science

Study of complex

networks drawing on

theories and methods

in graph theory,

statistical mechanics,

data mining, . . .

Ex:

· telecomm nets

· biological nets

· cognitive and

semantic nets

Network models

In understanding the

interactions in

real-world networks

models provide the

foundation necessary.

Ex:

· Random graph

generation models

yield structures for

comparing real-world

networks.

Hyperedge Replacement

Grammar

• Hyperedge replacement

is a fundamental

technique for graph and

hypergraph rewritinga

• Context-free rewriting

formalism for graph

generation.b

aDrewes et al. (1997)
bChiang et al. (2013)
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Background - Graphs, hypergraphs, hyperedges, ...

What is a graph, what is hypergraph, or a hyperedge

A hypergraph extends a Graph abstraction in the sense that edges are

allowed to connect to an arbitrary number of vertices (not just two).

a

b

c d

a

b

c d

Graph Hypergraph (H)

edge

hyperedge

hyperedge
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Background - HRGs

What is a hyperedge replacement grammar

An HRG is graph rewriting system. It represents the instructions on

how the graph is pieced together.

A hyperedge replacement grammar is a tuple G = 〈N,T ,S ,P〉

N finite set of nonterminal symbols.

T finite set of terminal symbols.

S distinguished starting nonterminal, where S ∈ N

P finite set of production rules A→ R

LHS → RHS
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Background - HRG continued

An HRG G = 〈N,T ,S ,P〉. Ex: Production rules where A→ R

denotes that we will replace A with R. Shown below is an example of left

hand side (lhs) and right hand side (rhs) elements for two productions

∈ P.

N

N

S

N

c d

e

d

e

c
bN

dc

e

lhs rhs

a

N

e

Nontermina nodes

Internal Terminal nodes

External Terminal nodes
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Background and definitions

Network science Network models

Hyperedge Replacement Grammar

The focus of my work is on HRG graph models.
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Related work - Network models

Other approaches used in the field . . .

Random graph

model

G (N, p) model wires pairs of nodes

with probability p

Erdős and

Rényi (1960);

Gilbert (1959)

Preferential

attachment

Captures hub formation in the

graph; a direct extension of random

graph model

Barabási and

Albert (1999)

Stochastic

block model

In sociometry, the objective is to

break up a graph into groups or

blocks. These models helps in find-

ing communities.

Girvan and

Newman

(2002)
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Related work - network properties based models

Other modeling approaches relying on the properties of network in

question . . .

4 1

3 2

Exponential Random

Graph Model

Kronecker product Chung and Lu

Generates graphs with similar

# of triangles or wedges as ob-

served empirically

Infers a model as a 2x2 or 3x3

matrix, then uses matrix mul-

tiplication to grow graphs

Generates graphs using degree

sequence
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Learning Hyperedge

Replacement Grammars



Learning HRGs and growing graphs

Model inference and graph generation

Graph Grammar

graph generation

Tree decomposition

HRGGraph Theory 

Formal Language 
 Theory
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HRG Model Inference

Here is how the HRG model works

A R

d

e

c
bN

dc

e

N
H

P
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Tree Decomposition

Maximum Cardinality Search is the algorithm used in our tree

decomposition step

d

e f

dc

a

c a

b

e

c d

b c

e

d

e f

ca

b

c b

e

e

c d

b

a

c
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HRG extraction

Extracting an HRG for

Rule 1 Rule 2 Rule 3

. . . the root . . . a leaf5 . . . a middle clique

5No Nonterminal symbols on rhs
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Graph generation - Stochastic

Generating a synthetic graph
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From production rules to graph generation

Graph generation options

Isomorphic graphs
Interesting, loss-less, but impractical

(not used)

Stochastic

Automatically grows graphs of ap-

proximate size and we throw away

bad graphs that don’t match the in-

put

Fixed size We discuss this one later
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Stochastic graph generation - characteristics

Stochastic

• On large graphs we learn an HRG by sampling

2-3 (300 node) subgraphs

• PHRG: identical rules in (A→ R) are merged

and we keep a count that allows us to define a

probability distribution over the rules

S

current new graph

bag of rules
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Experimental results - Stochastic Generation

Degree distribution

Evaluated HRG

on a diverse ar-

ray of public

datasets
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Experimental results - Stochastic Generation

Hop Plot
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Graphlet correlation distance

Graphlet correlation distance (GCD6)

• A new network metric for network

alignment

• Compares two networks by considering

graphlet structures at the node level

6Yaveroğlu et al. (2015)
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Experimental results - Stochastic Generation

Graphlet Correlation Distance

NB: lower is better.
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A Significant Limitation of the HRG Model

We discovered a limitation

• Stochastic generation yielded graphs of various sizes. The

median-size seemed to be close to the empirical size, but the

size-variance is impractical.

0 10 20 30 40 50

0

20

40

60

80

100

runs

|c
ou

n
t|

|V |
|E |

Example where the

reference graph has 34

nodes and 78 edges

(50 runs)
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Fixed-Size Generation

Fixed-Size addresses the limitation of Stochastic generation
.

PHRG defines a

probability distri-

bution over rules.

P(H∗),7 so we want

to sample from

P(H∗ | |H∗| = n)

We pre-compute a ta-

ble of rule firing prob-

abilities α 8

We select a path

through α that gener-

ates a graph of speci-

fied size

Once we have computed the α, we can sample a graph of size n

7H is the original graph and H∗ is the synthetic graph
8Code by Chiang
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Network Statistics - Degree distribution
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Network Statistics- Hop-Plot
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Network Statistics - Clustering Coefficients
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Network Statistics - Eigenvector Centrality
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Network Statistics - Graphlet counts and correlation distance

Table 1: Motif Statistics and GCD

Graphs GCD

Routers 13511 1397413 9863 304478 6266541 177475 194533149 18615590 0

HRG 13928 1387388 9997 288664 6223500 174787 208588200 18398430 1.41

Kronecker 144 61406 0 80 10676 973 642676 551496 2.81

Chung-Lu 4787 356897 6268 81403 1651445 13116 35296782 4992714 2.00

Enron 727044 23385761 2341639 22478442 375691411 6758870 4479591993 1371828K 0

HRG 79131 4430783 49355 554240 13123350 556760 688165900 54040090 0.51

Kronecker 2598 5745412 1 1011 608566 49869 1.89468000 141065K 2.88

Chung-Lu 322352 23590260 1191770 16267140 342570000 10195620 3967912K 2170161K 1.33

arXiv 89287 558179 320385 635143 4686232 382032 11898620 7947374 0

HRG 88108 606999 320039 656554 5200392 455516 15691941 9162859 1.10

Kronecker 436 224916 1 293 47239 4277 3280822 2993351 2.10

Chung-Lu 927 232276 6 967 87868 11395 2503333 3936998 1.82

GCD - computes statistics on a per node basis

Motif counting - a more traditional global metric
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Graph Extrapolation

Given a small snapshot of the network

Could we use our models to infer larger (or smaller) network with the

same local and global properties?

1 2 4 8 16 32

2

4

Size Multiple

G
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D

Karate Club

1
8

1
4

1
2

1 2 4 8 16 32

2

4

Size Multiple
G

C
D

Protein

HRG Chung-Lu Kronecker

HRG generate good results at small size multiples & GCD scores remain mostly leveled as the size

multiple grows.
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Model Robustness



Model Robustness

Infinity Mirror Test

Simple test aims to test how well a graph model captures the important

features in the empirical graph.

Example infinity mirror test on the Kronecker model
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Network Statistics- Degree distribution
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Network Statistics- Hop-plot
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Graphlet Correlation Distance
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Infinity Mirror Test on HRG Graphs

GCD - Notice the downward trend
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Tree Decomposition Effect on Production Rules

Does choice of tree decomposition affect the production rules?

• What kind of production rules result given the choice of TD

algorithm?

→ We explore six algorithms and examine the rules.

→ We find a rule set from intersection of the production rules that

result from multiple tree decompositions.
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Tree decomposition algorithms

Table 2: We identified these TD algorithms for this study.

TD algorithm Description

MCS Maximum cardinality search is a simple heuristic

MCSM Minimum triangulation extension to MCS.

MinD Minimum degree is a well known general-purpose order-

ing scheme and is widely used in sparse matrix compu-

tation.

MinF Minimum fill consists of greedy node elimination with

the fewest edges are added breaking ties arbitrarily.

Lex-M Derived from lexicographic breadth-first search for min-

imal triangulation.

MMD Multiple minimum degree
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Tree Decomposition - Results

Width of the tree as a function of TD algorithm

The width of the tree

Dataset mcs9 mcs lexm mcsm mind minf mmd

µ (σ)

LesMis 9 (0) 11 9 11 9 9 9

contact 40 42 43 43 50 40 40

arenas-jazz 59 (0) 88 77 81 104 59 73

pdzbase 6 9 12 13 6 6 6

ucforum 126 326 361 341 282 276 279

Hypertext 76 (0) 80 89 89 76 76 76

Infectious 39 (0) 65 56 128 42 40 49

emailEuCore 34 (0) 41 46 45 35 34 35

EuroRoad 6.6 (2.6) 42 30 48 19 16 16

College Msg 87.6 (20.3) 459 602 543 404 394 403

9HRG uses maximum cardinality search
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More Results - Graphlet Correlation Distance

MCS (baseline) and MinF produce the best results. Below is the

GCD computed for graphs generated using productions derived from the

these two TD algorithms.

0 0.5 1 1.5 2 2.5 3 3.5 4

Tribes

College

Contact

LesMis

MEmails

Hypertext

GCD
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Tree Decomposition - Methods

Six different TD algorithms, then we find the overlap and isomorphic

intersection.

H

MCS

LEX-M

MCSM

MIND

MINF

MMD

Tree 
Decomposition

Production 
rules

*

Take the 
intersection

Can the  
rules fire? Grow graphs

41



From the isomorphic intersection of rules

Graph: Social network of tribes of the Gahuku-Gama
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Summary

1. HRG for general graphs

• Model inference

• Stochastic Graph generation.

2. PHRG & Fixed size

• Probabilistic HRG

• Fixed-size graph generation

3. Model Robustness

• Infinity Mirror Test

• Graph size extrapolation

4. Tree Decomposition

• Exploring tree decomposition

effects on HRG graphs

• Isomorphic intersection of

the production rules grow

HRG graphs
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Collaborations



Collaborations

Temporal HRG (THRG)

An extension of HRG to time-stamped dynamic graphs. We

explored temporal dynamics to enhance HRG. Our objective was

to capture latent features during network growth Pennycuff et al.

(2017).

Latent variable HRG (LaTHRG)

Addressing a limitation in HRG graph generation step that selects

rules based on frequency rather than their place in terms of

tree-height Wang et al. (201x).
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Future Directions



Future Direction

Dig deeper & extend these concepts to other areas

Neural network architectures

Sinha et al. (2017); Negrinho and Gordon (2017)

Zoph and Le (2016)

Analytical Methods

Newman (2002); Leskovec et al. (2010)

Graph Contractions

Bernstein et al. (2017); Wang et al. (2014)
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Thank you.
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Software

github.com/nddsg/PHRG

Download source code and collaborate

twitter.com/abitofalchemy

Follow my work and tell me what you think.

These slides are based on:

github.com/matze/mtheme
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