
GENERATING NETWORKS BY LEARNING HYPEREDGE REPLACEMENT

GRAMMARS

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Salvador Aguiñaga

Tim Weninger, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

July 2018

This document is in the public domain.

GENERATING NETWORKS BY LEARNING HYPEREDGE REPLACEMENT

GRAMMARS

Abstract

by

Salvador Aguiñaga

Network modeling is critical and central to the study of complex systems. Mod-

eling enables researchers to examine emergent behavior and related phenomena from

the milieu of interacting patterns at the local level. These complex systems are

diverse, ranging from the global economy, neuroscience, protein folding molecular

interactions, to the Internet. Evaluating network models on their ability to auto-

matically learn the underlying features is integral to algorithm development in many

areas of computational science.

Here we describe methods and develop algorithms that extend and evaluate hy-

peredge replacement grammars, a formalism in formal language theory. We detail

extensions for model-inference on real-world networks and graph generation. Dis-

covering patterns involved in system behavior to build models for real-world systems

that preserve many of the network properties during the generation step is the central

focus of this work. Growing similar structures at various scale is also crucial to the

evolution of the scientific tools required in today’s information landscape. Experi-

mental results demonstrate that hyperedge replacement grammars offer a new way to

learn network features that facilitate compelling graphical structure generation that

advances network science in areas of modeling and network analysis.

To my brilliant and beautiful wife, Kristin and to my darling children, Izzy, Adri,

and Vivi.

ii

CONTENTS

FIGURES . vi

TABLES . ix

ACKNOWLEDGMENTS . x

CHAPTER 1: INTRODUCTION . 1
1.1 Graph Mining . 2
1.2 Formal Language Theory and Graph Theory 4
1.3 Contribution . 6
1.4 Impact . 6

CHAPTER 2: BACKGROUND . 8
2.1 Graphs and Hypergraphs . 8

2.1.1 Graph Properties . 8
2.2 Graph Models . 10

2.2.1 Generative Graph Models . 10
2.3 Hyperedge Replacement Grammars 12

CHAPTER 3: LEARNING HYPEREDGE REPLACEMENT GRAMMARS . 14
3.1 Preliminaries . 16

3.1.1 Tree Decomposition . 17
3.1.2 Hyperedge Replacement Grammar 19

3.2 Learning HRGs . 20
3.2.1 Binarization . 20
3.2.2 Tree Decomposition Pruning 21
3.2.3 Tree Decompositions and HRGs 22

3.2.3.1 Root Node . 23
3.2.3.2 Leaf Node . 25

3.2.4 Top-Down HRG Rule Induction 25
3.2.5 Complexity Analysis . 26

3.3 Graph Generation . 27
3.3.1 Exact Generation . 27
3.3.2 Stochastic Generation . 30
3.3.3 Fixed-Size Generation . 31

iii

3.3.4 Pruning Inside Probabilities 34
3.4 Summary . 35

CHAPTER 4: EVALUATING GRAPH GENERATORS 38
4.1 Real-world Datasets . 39
4.2 Methodology . 40

4.2.1 Graph Generation Results . 42
4.2.1.1 Global Measures . 43

4.2.2 Canonical Graph Comparison 49
4.2.2.1 Graphlet Correlation Distance 49

4.2.3 Graph Extrapolation . 50
4.2.4 Sampling and Grammar Complexity 51

4.2.4.1 Model Size and Performance 53
4.2.4.2 Runtime Analysis 53
4.2.4.3 Graph Guarantees 55

4.3 Summary . 56

CHAPTER 5: INFINITY MIRROR TEST FOR ANALYZING GRAPH GEN-
ERATORS . 57
5.1 Infinity Mirror Test . 58
5.2 Experiments . 60

5.2.1 Network Statistics or Measures 61
5.2.1.1 Degree Distribution 61
5.2.1.2 Eigenvector Centrality 63
5.2.1.3 Hop Plot . 64
5.2.1.4 Graphlet Correlation Distance 66
5.2.1.5 Clustering Coefficients 67
5.2.1.6 Assortativity. 68

5.2.2 Robustness of Chung-Lu Extensions 69
5.3 Infinity Mirror for HRG . 70

5.3.1 Infinity Mirror Model Size . 70
5.4 Discussion . 71

CHAPTER 6: TREE DECOMPOSITION . 73
6.1 Background . 74
6.2 Comparing Tree Decompositions . 76

6.2.1 Datasets . 77
6.3 Methodology . 79

6.3.1 Variance in Tree Decomposition 80
6.4 Discussion . 81

CHAPTER 7: SUMMARY AND FUTURE DIRECTIONS 84
7.1 Collaborations . 85

7.1.1 HRG Extension to Temporal Graphs 85

iv

7.1.2 Latent Variable Probabilistic Graph Grammars 86
7.2 Vision and Future Work . 86

7.2.1 Analytic Methods for the Network Properties of HRG Graphs 87
7.2.2 Applications to Deep Learning 87
7.2.3 Applications to Graph Engines 87

BIBLIOGRAPHY . 89

v

FIGURES

3.1 A graph and one possible minimal-width tree decomposition for it.
Ghosted edges are not part of Eη; they are shown only for explanatory
purposes. 18

3.2 Binarization of a bag in a tree decomposition. 21

3.3 Pruning a tree decomposition to remove leaf nodes without internal
vertices. Ghosted tree nodes show nodes that are pruned. 22

3.4 Example of hyperedge replacement grammar rule creation from an
interior vertex of the tree decomposition. Note that lowercase letters
inside vertices are for explanatory purposes only; only the numeric
labels outside external vertices are actually part of the rule. 23

3.5 Example of hyperedge replacement grammar rule creation from the
root node of the tree decomposition. 24

3.6 Example of hyperedge replacement grammar rule creation from a leaf
vertex of the tree decomposition. 24

3.7 Complete set of production rules extracted from the example tree de-
composition. Note that lowercase letters inside vertices are for ex-
planatory purposes only; only the numeric labels outside external ver-
tices are actually part of the rule. 26

3.8 Application of Rule 1 to replace the starting nonterminal S with the
RHS to create a new graph H∗. 28

3.9 Application of Rule 2 to replace a size-3 nonterminal in H ′ with the
RHS to create a new graph H∗. 28

3.10 Application of Rule 3 to replace a size-2 nonterminal in H ′ with the
RHS to create a new graph H∗. 29

3.11 Application of Rule 4 to create an H∗ that is isomorphic to the original
graph H. 30

3.12 When an HRG rule has two nonterminal symbols, one is overwhelm-
ingly likely to be much larger than the other. This plot shows, for
various grammar rules (one LHS per row, one RHS per colored line),
the probability (log scale) of apportioning 1024 nodes between two
nonterminal symbols. This plot is best viewed in color. 36

vi

4.1 Degree Distribution. Dataset graphs exhibit a power law degree dis-
tribution that is well captured by existing graph generators as well as
HRG. 42

4.2 Eigenvector Centrality. Nodes are ordered by their eigenvector-values
along the x-axis. Cosine distance between the original graph and HRG,
Chung-Lu and Kronecker models are shown at the top of each plot
where lower is better. In terms of cosine distance, the eigenvector of
HRG is consistently closest to that of the original graph. 43

4.3 Hop Plot. Number of vertex pairs that are reachable within x-hops.
HRG closely and consistently resembles the hop plot curves of the
original graph. 44

4.4 Mean Clustering Coefficient by Node Degree. HRG closely and con-
sistently resembles the clustering coefficients of the original graph. . 45

4.5 Local Degree Assortativity. HRG, Chung-Lu, and Kronecker graphs
show mixed results with no clear winner. 46

4.6 GCD of graphs extrapolated in multiples up to 32x from two small
graphs. HRG outperforms Chung-Lu and Kronecker models when gen-
erating larger graphs. Lower is better. 51

4.7 HRG model size as the subgraph size s and the number of subgraph
samples k varies. The model size grows linearly with k and s. 52

4.8 GCD as a function of model size. We find a slightly negative relation-
ship between model size and performance, but with quickly diminish-
ing returns. We show best-fit lines and their equations; the shorter fit
line in the Routers plot ignores the square outlier points. 54

4.9 Total extraction runtime (i.e., tree decomposition creation and rule
extraction) as a function of model size. Best fit lines on the log-log
plot show that the execution time grows linearly with the model size. 55

5.1 Example infinity mirror test on the Kronecker model. This test recur-
sively learns a model and generates graphs. Although not apparent in
H ′1, this example shows a particular type of degeneration where the
model loses edges. 58

5.2 Degree distribution. H shown in blue. H ′2, H
′
5, H

′
8 and H ′10 are shown

in lighter and lighter shades of red. Degeneration is observed when re-
currences increasingly deviate from H. The results for some Kronecker
models are missing because they were unable to generate graphs for
non-scale-free graphs. 62

5.3 Eigenvector centrality. H shown in blue. Results for recurrences H ′2,
H ′5, H

′
8 and H ′10 in lighter and lighter shades of red showing eigenvector

centrality for each network node. Degeneration is shown by increasing
deviation from H’s eigenvector centrality signature. 63

vii

5.4 Hop plot. H shown in blue. Results for recurrences H ′2, H
′
5, H

′
8 and

H ′10 in lighter and lighter shades of red. Degeneration is observed when
recurrences increasingly deviate from H. 64

5.5 Graphlet Correlation Distance. All recurrences are shown for Chung
Lu, BTER and Kronecker graph generators. Lower is better. Degen-
eration is indicated by a rise in the GCD values as the recurrences
increase. 66

5.6 Clustering Coefficient. H is in blue. Results for recurrences H ′2, H
′
5, H

′
8

and H ′10 in lighter and lighter shades of red. Degeneration is observed
when recurrences increasingly deviate from H. 67

5.7 Assortativity. H is in blue. Results for recurrences H ′2, H
′
5, H

′
8 and

H ′10 in lighter and lighter shades of red. Degeneration is observed when
recurrences increasingly deviate from H. 68

5.8 Infinity Mirror: GCD comparison after each recurrence. Unlike Kro-
necker and Chung-Lu models, HRG does not degenerate as its model
is applied repeatedly. 71

5.9 Number of rules (mean over 20 runs) derived as the number of recur-
rences increases. 71

6.1 Results of generating graphs from various elimination orderings . . . 83

viii

TABLES

1.1 THESIS OVERVIEW . 6

4.1 EXPERIMENTAL DATASET . 39

4.2 GRAPHLET STATISTICS AND CORRELATION DISTANCE . . . 48

5.1 REAL NETWORKS . 61

6.1 SUMMARY: ELIMINATION ORDERING ALGORITHMS. 77

6.2 REAL NETWORKS . 79

6.3 WIDTH AS A FUNCTION OF ELIMINATION ORDERING 80

6.4 GCD USING AN ARRAY OF ELIMINATION ORDERING HEURIS-
TICS . 81

6.5 PRODUCTION RULES OVERLAP: EMAIL-EU DATASET 82

ix

ACKNOWLEDGMENTS

First, I am indebted to my advisor, Tim Weninger, one of the most positive,

generous, and extraordinary individuals I have ever met. I consider myself lucky for

the opportunity to work with him and all he has taught me. I am grateful for his

support and generous advice for the last four years. The work presented in this thesis

would not have been possible without him.

Special thanks go out to Joyce Yeats, Ginny Watterson, M. D. McNally, and

Diane Wordinger in the Department of Computer Science and Engineering. Joyce

has always guided me and helped navigate all aspects of the graduate program from

day one. Their help and dedication to graduate students’ success are invaluable. I

would like to thank iCENSA. My interaction with the students and professors in

iCENSA has had an impact on how I see the world of research and science. I would

like to extend another especial thanks to Ms. Jasmin Botello for making iCENSA a

great place to work. iCENSA would not be the great place it is without her. Her

enthusiasm and commitment to both, professors and students, makes us feel that we

belong and are part of an exceptional community of researchers.

I would like to thank every one of my collaborators. They are a fantastic group of

talented individuals. I would like to acknowledge Nitesh Chawla and Aastha Nigam,

Corey Pennycuff, Cindy Wang who is now a graduate student at CMU. To David

Chiang, I would like to extend my thanks for his guidance, and for challenging me

and offering insights that have shaped my work. Before working with Tim, Chris

Poellabauer supported me and worked with me on a pair of exciting projects. I am

grateful to have gotten to know him and his students. Chris made feel at home

x

my first two years of graduate school, and I am thankful for his enthusiasm and

guidance during my most challenging years of graduate school. I would like to thank

and acknowledge my thesis committee for their support and advice: Professor James

Evans, Professor Nitesh Chawla, and Professor David Chiang.

Next, I would like to acknowledge the entire Weninger Lab especially my lab

mates: Maria Glenski, Corey Pennycuff, and Baoxu (Dash) Shi. I am especially

thankful to Dash for engaging with me on many exciting conversations and for al-

lowing me and my family to be part of a special day: Jessie and Dash’s wedding day.

The DSG-ND group is an incredible collection of individuals; it has been my honor

to know them and worked with them.

Lastly and most importantly, I would like to thank my love, my best friend, and

the smartest person I know, my beautiful wife, Kristin. Her belief in me, her support,

advice, and her endurance for putting up with me especially during the most trying

days shows me how fortunate I am. All that I have accomplished during my tenure as

a graduate student I owe it all to her and the love of my beautiful children: Isabella,

Adrian, and Violetta. Their zest, curiosity, love, and affection kept me going. I am

indeed a lucky man.

xi

CHAPTER 1

INTRODUCTION

Systems, natural or artificial, can be characterized by their function or their

purpose. A system consists of a set of entities and the interactions within. These

interactions, also referred to as relationships, give rise to global behavior of the system

that is characterized as either simple or complex. Complex systems can differ from

simple systems by way of lattices or random graphs from their intrinsic and non-

trivial topological features and patterns of connections found in real-world networks.

Mathematics aims to represents these systems through a powerful abstraction called

a graph or a network. Network science applies to problems across fields as diverse as

medicine, healthcare, politics, economics, and social science.

Representing complex systems as a graph, or as a network, allows us to draw on

methods and theories from mathematics (graph theory), physics (statistical mechan-

ics), computer science (data mining), and sociology (social structure). This com-

bination of methods leads to the development of predictive models that shed light

into physical, biological, and social phenomena [119]. Model development allows us

to understand the many features at the heart of real-world graphs. For example, a

significant property of many graphs is community structure. This property exam-

ines how tightly connected entities are (or not) in a graph. Combining statistical

mechanics, sociometry, and graph theory allows for methods to explore where nodes

fall in relation to a community’s boundary. Evaluating community detection meth-

ods on a real-world graph often requires the same evaluation on computer-generated

graphs [38, 74]. Constructing computer-generated or synthetic graphs to mimic and

1

preserve one or more of these network properties is challenging. Automatically gen-

erating graphs using novel computational approaches is one way to address this.

The rate at which people and machines create and consume information pushes the

boundaries of our technology to be able to gain insight and new knowledge. The new

digital age begs for innovative tools to help us analyze the deluge of data in order to

glean new knowledge and insights [102].

Capturing and utilizing certain properties in a graph of interest is critical to the

development or generation of new graphs. One method is to incorporate certain

network features into the graph generation step. For example, if the number of

triangles in a reference graph is important, then we want to maintain that network

feature in our synthetic graphs; Exponential Random Graphs Model (ERGM) is a

useful way to achieve this. Other models excel at generating similar graphs with a

degree centrality consistent with properties observed in the original (or reference)

graph [48, 75]. This thesis focuses on computational methods that examine graph

micro-structure and leverage local connection patterns to infer a model of system

structure. The graph model’s usefulness includes growing synthetic graphs, graph

classification, and generating network architectures. By generating realistic synthetic

graphs we can create new networks whose properties are similar to those in the

reference or training graph.

1.1 Graph Mining

For the purposes of this thesis, graph mining technologies can be divided into two

classes: (1) subgraph mining algorithms and (2) graph generating models.

Subgraph Mining. Rooted in data mining and knowledge discovery, subgraph min-

ing methods are efficient and scalable algorithms for traditional frequent itemset

mining on graphs [42, 52]. Frequent graph patterns are subgraphs that are found

2

from a single large graph or a collection of many smaller graphs. A subgraph is

deemed to be frequent if it appears more than some user-specified support threshold.

Being descriptive models, frequent subgraphs are useful in characterizing graphs and

can be used for clustering, classification or other discriminative tasks. Unfortunately,

these methods have a so-called “combinatorial explosion” problem [114] wherein the

search space grows exponentially with the pattern size. This causes computational

headaches, and can also return a massive result set that hinders real world applica-

bility. Recent work that heuristically mines graphs for important or representative

subgraphs have been developed in response, but are still limited by their choice

of heuristic [77, 92, 110, 120]. Alternatively, researchers characterize a network by

counting small subgraphs called graphlets, and therefore forfeit any chance of find-

ing larger, more interesting structures[5, 81, 98]. Overcoming these limitations will

require a principled approach that discovers the structures within graphs and is the

first research objective of the proposed work.

Graph Generators. Graph generators, like frequent subgraph mining, also find dis-

tinguishing characteristics of networks, but go one step further by generating new

graphs that “look like” the original graph(s). What a graph looks like includes local

graph properties like the counts of frequent subgraphs, but can also include global

graph properties like the degree distribution, clustering coefficient, diameter, and

assortativity among many others. Early graph generators, like the random graph

of Erdős and Reyni [30], the small world network of Watts and Strogatz [119], or

the scale free graph of Albert and Barabási [8], did not learn a model from a graph

directly, but rather had parameters that could be tuned to generate graphs with cer-

tain desirable properties. Recent work in exponential random graphs [100], Kronecker

graphs [17, 75], Chung-Lu graphs [22], and their many derivatives [60, 85, 86, 95] cre-

ate a model from some example graph in order to generate a new graph that has

3

many of the same global properties as the original graph.

Despite their conceptual similarity, subgraph mining algorithms and graph gen-

erators have little in common algorithmically. Simply put, they solve different prob-

lems. Although Kronecker and Chung-Lu graph generators learn their model from

an exemplar graph, only the exponential random graph (ERG) model actually learns

a model based on the specific patterns found in the graph. Unfortunately, the ERG

model must pre-define all possible patterns, and the complexity of the ERG model is

exponential in the number and size of the pre-defined patterns. The standard ERG

model is not good at generating new graphs; however the learned model can be in-

formative about the nature of the underlying graph, albeit through the lens of only a

handful of small structures, e.g., edges, triangles, 4-cliques [40]. The proposed work

will bridge the gap between subgraph mining and graph generation to create a new

suite of models and tools that can not only create informative models of real world

data, but also generate, extrapolate, and infer new graphs in a precise, principled

way.

1.2 Formal Language Theory and Graph Theory

The ideas in this thesis originate from a newfound relationship between graph

theory and formal language theory. The relationship between graph theory and for-

mal language theory allows for a Hyperedge Replacement Grammar (HRG) to be

extracted from any graph without loss of information. Like a context free grammar,

but for graphs, the extracted HRG contains the precise building blocks of the network

as well as the instructions by which these building blocks ought to be pieced together.

Because of the principled way it is constructed, the HRG can even be used to regen-

erate an isomorphic copy of the original graph. Although the isomorphic guarantees

are exciting and important, this thesis will focus instead on finding meaning in the

building blocks and their instructions [4].

4

Just as a context free string grammar generates a string, an HRG can generate a

graph by repeatedly choosing a nonterminal A and rewriting it using a production rule

A → R. The replacement hypergraph fragment R can itself have other nonterminal

hyperedges, so this process is repeated until there are no more nonterminals in the

graph.

HRGs have been studied some time in discrete mathematics and graph theory

literature. HRGs are conventionally used to generate graphs with very specific struc-

tures, e.g., rings, trees, stars. A drawback of many current applications of HRGs

is that their production rules must be manually defined. For example, the produc-

tion rules that generate a ring-graph are distinct from those that generate a tree,

and defining even simple grammars by hand is difficult or impossible. Very recently,

Kemp and Tenenbaum developed an inference algorithm that learned probabilities of

the HRG’s production rules from real world graphs, but they still relied on a handful

of rather basic hand-drawn production rules (of a related formalism called vertex

replacement grammar) to which probabilities were learned [58]. Kukluk, Holder and

Cook were able to define a grammar from frequent subgraphs [24, 47, 64–66], but

their methods have a coarse resolution because frequent subgraphs only account for

a small portion of the overall graph topology.

In this thesis, I investigate a relationship between graph theory and formal language

theory that allows for a Hypererdge Replacement Grammar (HRG) to be extracted

from a graph. I further show that the HRG can be used to represent the building

blocks of these graphs and go on to use this to generate synthetic graphs that remain

similar to the original graph.

This work builds on earlier efforts by my collaborators, Tim Weninger and David

Chiang, who pieced together the utility of HRG for graphs other than abstract mean-

ing representations (AMR) [20].

5

TABLE 1.1

THESIS OVERVIEW

Chapter Title Research Problem

3 HRG model inference and
graph generation

Can an HRG capture graph features to
grow graphs with properties matching the
input or reference graph?

4 Experimental evaluation
of HRG graph generation

Do HRGs actually generate realistic
graphs?

5 Model Robustness How well does the model captures essential
features in the real world network?

6 Tree decomposition What controls or biases the production
rules?

1.3 Contribution

This thesis is organized around the following themes: (I) HRG for graph genera-

tion [4], (II) Experimental evaluation of graph generation, (III) Measures of model

resilience [2], and (IV) Understanding model bias resulting from tree decomposition

algorithms. A summary of the key challenges for each theme is detailed in Table 1.1.

1.4 Impact

By marrying the fields of graph theory and formal language theory, lessons from

the previous 50 years of study in formal language theory, grammars, and much of

theoretical computer science can now be applied to graph mining and network sci-

ence! This thesis takes the steps towards reconciling these disparate fields by asking

incisive questions about the extraction, inference, and analysis of network patterns

in a mathematically elegant and principled way.

6

The introduction of the HRG graph model has triggered interest in areas of neural

network architecture designs for deep learning. HRG graph model is now taught in

undergraduate and graduate Network Science course in the Department of Computer

Science and Engineering.

7

CHAPTER 2

BACKGROUND

2.1 Graphs and Hypergraphs

In discrete mathematics graphs are powerful and versatile abstractions. A graph

is usually described as sets of vertices, V , and the interactions between vertices are

often represented as edges that connect at most two vertices, E.

A hypergraph H is a generalization of a classical graph. A hypergraph consists of

a collections of finite sets containing vertices. These sets are called hyperedges such

that edges may connect any number of vertices.

2.1.1 Graph Properties

The semantics of graphs gives rise to sets of properties, features, or attributes that

intrinsically characterize the graph. Graph properties take on the role of measuring

the graph. For instance, certain graph properties describe size (the number of edges)

and order (the number of nodes or vertices). Other measures help describe the

network in greater detail and, in some instances, infer function. For example, the

degree is a network property that helps understand a vertex’s connectivity to other

nodes [10, 33]. The number of edges incident on any given node helps understand

each node’s importance or influence in the graph.

Other graph properties have been described in scientific literature as far back

as the 1930’s with Jacob L. Moreno’s seminal work in sociometry [83] to the more

recent work describing scale-free power law distribution as a common property ob-

served in large networks [8]. For more on the historical unfolding of social network

8

analysis metrics see the survey’s by Wasserman and Faust [117], Freeman [34], and

Newman [90].

In this dissertation we employ several graph metrics to analyze graphs and hy-

pergraphs. Although many properties have been discovered and detailed in related

literature, we focus on three of the principal properties from which most others can

be derived.

• Degree Distribution. The degree distribution of a graph is the distribution
of the number of edges connecting to a particular vertex. Barabási and Albert
initially discovered that the degree distribution of many real world graphs fol-
lows a power law distribution such that the number of nodes Nd ∝ d−γ where
γ > 0 and γ is typically between 2 and 3 [8].

• Eigenvector Centrality. The principal eigenvector is often associated with
the centrality or “value” of each vertex in the network, where high values in-
dicate an important or central vertex and lower values indicate the opposite.
A skewed distribution points to a relatively few “celebrity” vertices and many
common nodes. The principal eigenvector value for each vertex is also closely
associated with the PageRank and degree value for each node.

• Hop Plot. The hop plot of a graph shows the number of vertex-pairs that
are reachable within x hops. The hop plot, therefore, is another way to view
how quickly a vertex’s neighborhood grows as the number of hops increases.
As in related work [72] we generate a hop plot by picking 50 random nodes and
perform a complete breadth first traversal over each graph.

The aforementioned network properties primarily focus on statistics of the
global network. However, there is mounting evidence arguing that graphlet
comparisons are the most complete way to measure the similarity between two
graphs [98, 115]. The graphlet distribution succinctly describes the number of
small, local substructures that compose the overall graph and therefore more
completely represents the details of what a graph “looks like.” It is possible
for two very dissimilar graphs to have the same degree distributions, hop plots,
etc., but it remains difficult for two dissimilar graphs to fool a comparison with
the graphlet distribution.

• Graphlet Correlation Distance Recent work from systems biology has
identified a new metric called the Graphlet Correlation Distance (GCD). The
GCD computes the distance between two graphlet correlation matrices – one
matrix for each graph [122]. It measures the frequency of the various graphlets
present in each graph, i.e., the number of edges, wedges, triangles, squares,

9

4-cliques, etc., and compares the graphlet frequencies between two graphs. Be-
cause the GCD is a distance metric, lower values are better. The GCD can
range from [0,+∞], where the GCD is 0 if the two graphs are isomorphic.

2.2 Graph Models

Graph models are powerful mathematical abstractions frequently and widely used

in the natural sciences, engineering, and in the social sciences. A core function of these

models is to represent the essential properties of systems or system behaviour at all

scales. Moreover, these models consist of a variety of abstract structures that can be

classified into state variables (or random variables), which, when linked together, can

describe a range of network information from simple to complex network structures.

Swiss mathematician Leonhard Euler is credited as one of the first mathemati-

cians to work on problems using graphical abstractions [31, 89] as far back as the

early 1700s. Two hundred years later, the social sciences invested in the study of

social networks. By the late 1950s and early sixties, interest in models that generate

networks as a mode to better understand them was gaining attention in academia and

industry. Currently, significant advancement in the study of network structure using

models for generating random graphs was pioneered in by Edgar Gilber, Paul Erdos

and Alfred Renyi [29, 37]. Two decades ago Watts, Strogatz, Barabasi, and Albert

introduced models of Small World networks [119] and Preferential Attachment [6] a

seminal set of works. With the arrival of the Internet and development of the Web,

applied network and graph theory spark feverish interest from both, academia and

industry.

2.2.1 Generative Graph Models

Generative models that underlie the ever-growing Web graph have received a great

deal attention for some time now. This graph’s nodes and edges exhibit power law

10

distributions based on empirical studies [32]. Network scientists have found that the

preferential attachment model, which generates a graph by attaching new nodes to

popular existing nodes, approximates the empirical growth pattern. Based on this

model, and subsequent refinements, network engineers are able to understand the

large scale behavior of the Web.

In this dissertation we focus on several different generative graph models: HRG,

Kronecker [75], Chung-Lu [23], Block Two-level Erdos Reyni (BTER) [104], and

exponential random graph (ERGM) [100] models. Other models, such as the Erdős-

Rényi random graph model, the Watts-Strogatz small world model, the preferential

attachment generator, etc. are only tangentially relevant to this thesis because they

do not learn a model from an empirical graph.

Kronecker graphs operate by learning an initiator matrix and then performing a

recursive multiplication of that initiator matrix in order to create an adjacency matrix

of the approximate graph. In our case, we use KronFit [75] with default parameters

to learn a 2 × 2 initiator matrix and then use the recursive Kronecker product to

generate the graph. Unfortunately, the Kronecker product only creates graphs where

the number of nodes is a power of 2, i.e., 2x, where we chose x = 15, x = 12, x = 13,

and x = 18 for Enron, ArXiv, Routers and DBLP graphs respectively to match the

number of nodes as closely as possible.

The Chung-Lu Graph Model (CL) takes, as input, a degree distribution and

generates a new graph of the similar degree distribution and size [21].

Exponential Random Graph Models (ERGMs) are a class of probabilistic models

used to directly describe several structural features of a graph [100]. We used default

parameters in R’s ERGM package [49] to generate graph models for comparison.

Exponential random graphs models belong to a class of statistical models, also known

as p∗ models. They have been used extensively to model social behavior in humans

and animals. More recently, ERGMs have been used to model complex neurological

11

interactions of the brain [16, 41, 106]. Goldenberg et al. survey statistical models and

discuss how ERGMs are an extension of the Erdos-Renyi-Gilbert model to account for

popularity, expansiveness and network effects due to reciprocation [35, 40]. However,

in addition to the problem of model degeneracy, ERGMs do not scale well to large

graphs, therefore ERGM results are omitted from this thesis.

2.3 Hyperedge Replacement Grammars

This dissertation presents a new graph generation methodology based on the

formalism of Hyperedge Replacement Grammars (HRGs). HRGs are a graphical

counterpart to context free string grammars used in compilers and natural language

processing [26]. Like in a context free string grammar, an HRG contains a set of

production rules P , each of which contains a left hand side (LHS) A and a right hand

side (RHS) R. In context free string grammars, the LHS must be a nonterminal

character, which can be replaced by some set of nonterminal or terminal characters

on the RHS of the rule. In HRGs, nonterminals are graph-cliques and a RHS can be

any graph (or hypergraph) fragment.

HRGs have been studied for some time in discrete mathematics and graph theory

literature. They are conventionally used to generate graphs with very specific struc-

tures, e.g., rings, trees, stars. A drawback of many current applications of HRGs

is that their production rules must be manually defined. For example, the produc-

tion rules that generate a ring-graph are distinct from those that generate a tree,

and defining even simple grammars by hand is difficult to impossible. Very recently,

Kemp and Tenenbaum developed an inference algorithm that learned probabilities

of the production rules from real world graphs, but they still relied on a handful of

rather basic hand-drawn production rules (of a related formalism called vertex re-

placement grammar) to which probabilities were learned [58]. Kukluk, Holder and

Cook were able to define a grammar from frequent subgraphs [24, 47, 64–66], but

12

their methods have a coarse resolution because frequent subgraphs only account for

a small portion of the overall graph topology.

13

CHAPTER 3

LEARNING HYPEREDGE REPLACEMENT GRAMMARS

Teasing out signatures of interactions buried in overwhelming volumes of infor-

mation is one of the most basic challenges in scientific research. Understanding how

information is organized and how it evolves can help us discover its fundamental

underlying properties. Researchers do this when they investigate the relationships

between diseases, cell functions, chemicals, or particles, and we all learn new concepts

and solve problems by understanding the relationships between the various entities

present in our everyday lives. These entities can be represented as networks, or

graphs, in which local behaviors can be understood, but whose global view is highly

complex.

Discovering and analyzing network patterns to extract useful and interesting pat-

terns (building blocks) is critical to the advancement of many scientific fields. Indeed

the most pivotal moments in the development of a scientific field are centered on

discoveries about the structure of some phenomena [63]. For example, biologists

have agreed that tree structures are useful when organizing the evolutionary his-

tory of life [25, 55], and sociologists find that triadic closure underlies community

development [28, 43]. In other instances, the structural organization of the entities

may resemble a ring, a clique, a star, a constellation, or any number of complex

configurations.

Unfortunately, current graph mining research deals with small pre-defined pat-

terns [58, 79] or frequently reoccurring patterns [47, 54, 64, 66], even though inter-

esting and useful information may be hidden in unknown and non-frequent patterns.

14

Principled strategies for extracting these complex patterns are needed to discover the

precise mechanisms that govern network structure and growth. In-depth examina-

tion of this mechanism leads to a better understanding of graph patterns involved

in structural, topological, and functional properties of complex systems. This is pre-

cisely the focus of the present work: to develop and evaluate techniques that learn

the building blocks of real-world systems that, in aggregate, succinctly describe the

observed interactions expressed in a network.

These networks exhibit a long and varied list of global properties, including heavy-

tailed degree distributions [109], and interesting community structures [104] to name a

few. Recent work has found that these global properties are products of a graph’s local

properties [98, 116]. In the present work, our goal is to learn the local structures that,

in aggregate, help describe the interactions observed in the network and generalize

to applications across a variety of fields like computer vision, computational biology,

and graph compression.

The key insight for this task is that a network’s tree decomposition encodes ro-

bust and precise information about the network. A hyperedge replacement grammar

(HRG), extracted from the tree decomposition, contains graphical rewriting rules

that can match and replace graph fragments similar to how a context-free grammar

(CFG) rewrites characters in a string. These graph fragments represent a succinct,

yet complete description of the building blocks of the network, and the rewriting rules

of the HRG describe the instructions on how the graph is pieced together.

Unlike previous models that manually define the space of possible structures [57]

or define the grammar by extracting frequent subgraphs [65, 67], our framework can

automatically discover the necessary forms and use them to recreate the original

graph exactly as well as infer generalizations of the original network. Our approach

can handle any type of graph and does not make any assumption about the topology

of the data.

15

The HRG framework is divided into two steps: 1) graph model learning and

2) graph generation. After reviewing some of the theoretical foundations of tree

decompositions and HRGs, we show how to extract an HRG from a graph. These

graph rewriting rules can be applied randomly to generate larger and larger graphs.

However, scientists typically have a specific size in mind, so we introduce a fixed-size

graph generation algorithm that will apply HRG rules to generate a realistic graph

of a user-specified size.

The extraction method was conceived by Prof. David Chiang and the approximate

tree decomposition was was contributed by myself and Prof. Weninger. The code was

implemented by Prof. Chiang, Prof. Weninger, and myself.

3.1 Preliminaries

The new work in this thesis begins where previous work [4, 20, 69, 99] left off.

However, before we begin, some background knowledge is crucial to understand the

key insights of our main contributions.

We begin with an arbitrary input hypergraph H = (V,E), where V is a finite set

of vertices and E ⊆ V + is a set of hyperedges. A hyperedge e ∈ E can connect one or

more ordered vertices and is written e = (v1, v2, . . . , vk). Common graphs (e.g., social

networks, Web graphs, information networks) are a particular case of hypergraphs

where each edge connects exactly two vertices. For convenience, all of the graphs in

this thesis will be simple, connected and undirected, although these restrictions are

not vital. In the remainder of this section, we refer mainly to previous developments

in tree decompositions and their relationship to hyperedge replacement grammars in

order to support the claims made in sections 3 and 4.

16

3.1.1 Tree Decomposition

In graph theory, all graphs can be decomposed (though not uniquely) into a tree

decomposition [61]. A tree decomposition of any graph (or any hypergraph) is a

tree, each of whose nodes is labeled with nodes and edges from the original graph,

such that vertex cover, edge cover and the running intersection properties hold [99],

and the “width” of the optimal tree decomposition measures how tree-like a graph

is. The reason for the wide interest in finding the tree decomposition of a graph is

because many computationally difficult problems can be solved efficiently when the

data is constrained to be a tree. For an expanded introduction, we refer the reader

to Chapters 9 and 10 of Koller and Friedman’s textbook [61].

Within data mining and machine learning, tree decompositions are best known for

their role in exact inference in probabilistic graphical models, constraint satisfaction,

and query optimization. Unfortunately, finding the optimal, i.e., the minimal-width,

tree decomposition is NP-Complete [7]. However many reasonable approximations

exist for general graphs [14, 112] and the discovery of better algorithms is an active

area of research in discrete mathematics [1, 76, 82].

Definition 3.1.1. A tree decomposition of a graph H = (V,E) is a tree TD, each of

whose nodes η is labeled with a Vη ⊆ V and Eη ⊆ E, such that the following properties

hold:

1. Vertex Cover: For each v ∈ V , there is a vertex η ∈ TD such that v ∈ Vη.

2. Edge Cover: For each hyperedge ei = {v1, . . . , vk} ∈ E there is exactly one node
η ∈ TD such that e ∈ Eη. Moreover, v1, . . . , vk ∈ Vη.

3. Running Intersection: For each v ∈ V , the set {η ∈ TD | v ∈ Vη} is connected.

Definition 3.1.2. The width of a tree decomposition is max(|Vη − 1|), and the

treewidth of a graph H is the minimal width of any tree decomposition of H.

Unfortunately, finding the optimal elimination ordering and corresponding minimal-

width tree decomposition is NP-Complete [7]. Fortunately, many reasonable approxi-

17

1 2

3 4

5 6

3 4

5

2

3 4

5

1 2

5

4

5 6

5 6

6

Original Graph Expanded Clique Tree

Figure 3.1. A graph and one possible minimal-width tree decomposition for
it. Ghosted edges are not part of Eη; they are shown only for explanatory

purposes.

mations exist for general graphs: in this chapter, we employ the commonly used max-

imum cardinality search (MCS) heuristic introduced by Tarjan and Yannikakis [113]

to compute a tree decomposition with a reasonably-low, but not necessarily minimal,

width.

Simply put, a tree decomposition of any graph (or any hypergraph) is a tree. Each

of whose nodes we label with nodes and edges from the original graph, such that vertex

cover, edge cover and the running intersection properties hold, and the “width” of the

tree decomposition measures how tree-like the graph is. The reason for the interest in

finding the tree decomposition of a graph is because many computationally difficult

problems can be solved efficiently when the data is constrained to be a tree.

Figure 3.1 shows a graph and its minimal-width tree decomposition (showing Vη

for each node η). We label nodes with lowercase Latin letters. We will refer back to

this graph and tree decomposition as a running example throughout this chapter.

18

3.1.2 Hyperedge Replacement Grammar

The key insight for this task is that a network’s tree decomposition encodes robust

and precise information about the network. An HRG, extracted from the clique-tree,

contains graphical rewriting rules that can match and replace graph fragments similar

to how a context-free Grammar (CFG) rewrites characters in a string. These graph

fragments represent a succinct, yet complete description of the building blocks of the

network, and the rewriting rules of the HRG describe the instructions on how the

graph is pieced together. For a thorough examination of HRGs, we refer the reader

to the survey by Drewes et al. [27].

Definition 3.1.3. A hyperedge replacement grammar is a tuple G = 〈N, T, S,P〉,

where

1. N is a finite set of nonterminal symbols. Each nonterminal A has a nonnegative
integer rank, which we write |A|.

2. T is a finite set of terminal symbols.

3. S ∈ N is a distinguished starting nonterminal, and |S| = 0.

4. P is a finite set of production rules A→ R, where

• A, the left hand side (LHS), is a nonterminal symbol.

• R, the right hand side (RHS), is a hypergraph whose edges are labeled by
symbols from T ∪ N . If an edge e is labeled by a nonterminal B, we must
have |e| = |B|.
• Exactly |A| vertices of R are designated external vertices and numbered 1, . . . , |A|.

The other vertices in R are called internal vertices.

When drawing HRG rules, we draw the LHS A as a hyperedge labeled A with

arity |A|. We draw the RHS as a hypergraph, with external vertices drawn as solid

black circles and the internal vertices as open white circles.

If an HRG rule has no nonterminal symbols in its RHS, we call it a terminal rule.

If an HRG rule has exactly one nonterminal symbol in its RHS, we call it a unary

rule.

19

Definition 3.1.4. Let G be an HRG and P = (A → R) be a production rule of G.

We define the relation H ′ ⇒ H∗ (H∗ is derived in one step from H ′) as follows.

H ′ must have a hyperedge e labeled A; let v1, . . . , vk be the vertices it connects. Let

u1, . . . , uk be the external vertices of R. Then H∗ is the graph formed by removing e

from H ′, making an isomorphic copy of R, and identifying vi with the copies of ui

for each i = 1, . . . , k.

Let ⇒∗ be the reflexive, transitive closure of ⇒. Then we say that G generates

a graph H if there is a production S → R and R ⇒∗ H and H has no edges labeled

with nonterminal symbols.

In other words, a derivation starts with the symbol S, and we repeatedly choose

a nonterminal A and rewrite it using a production A → R. The replacement hy-

pergraph fragments R can itself have other nonterminal hyperedges, so this process

repeats until there are no more nonterminal hyperedges. The following sections illus-

trate these definitions more clearly.

3.2 Learning HRGs

The first step in learning an HRG from a graph is to compute a tree decomposition

from the original graph. Then, this clique-tree directly induces an HRG, which we

demonstrate in this section.

3.2.1 Binarization

Just as context-free string grammars are more convenient to parse if put into

Chomsky normal form (CNF), we also assume, without loss of generality, that our

HRG also follows CNF. This means that each rule’s right-hand side has at most two

nonterminals. By the HRG induction methods presented later in this section, each

tree node η yields an HRG rule, and the number of children of η determines the

20

Vη

Vη1 Vη3Vη2
⇒

Vη

Vη1 Vη′

Vη2 Vη3

Figure 3.2. Binarization of a bag in a tree decomposition.

number of nonterminals on the right-hand side of the resulting rule. Thus, it suffices

for the tree decomposition to have a branching factor of at most two. Although the

branching factor of a tree decomposition may be greater than two, it is always easy

to binarize it.

There is more than one way to do this; we use the following scheme. Let η be a

tree decomposition node with children η1, . . . , ηd, where d > 2 (here d corresponds

to the number of children for a given parent node). These are labeled with bags

Vη, Vη1 , . . . , Vηd , respectively. Make a copy of η; call it η′, and let Vη′ = Vη. Let the

children of η be η1 and η′, and let the children of η′ be η2, . . . , ηr. See Fig. 3.2 for an

example. Then, if η′ has more than two children, apply this procedure recursively to

η′.

It is easy to see that this procedure terminates and results in a tree decomposition

whose nodes are at most binary-branching and still has the vertex cover, edge cover,

and running intersection properties for H.

3.2.2 Tree Decomposition Pruning

Later we will introduce a dynamic programming algorithm for constructing graphs

that require every leaf node of the tree decomposition to have at least one internal

vertex. Tree decomposition algorithms, such as the MCS algorithm used in this

chapter, do no guarantee these conditions. Fortunately, we can just remove these leaf

21

c d

e

b

c d

e

a b

e

d

e f

e f

f

⇒

c d

e

b

c d

e

a b

e

d

e f

e f

Figure 3.3. Pruning a tree decomposition to remove leaf nodes without
internal vertices. Ghosted tree nodes show nodes that are pruned.

nodes from the tree.

The bottom-right tree decomposition node in Fig. 3.1 is such an example because

f is an external vertex; that is, f exists in its parent. Because no internal vertices

exist in this leaf node, it is removed from the tree. The node with vertices e and f is

now a leaf, as illustrated in the left side of Fig. 3.3. Vertices e and f in the new leaf

node are still both external vertices, so this tree node must also be removed creating

a final tree decomposition illustrated in the right side of Fig. 3.3.

3.2.3 Tree Decompositions and HRGs

Here we show how to extract an HRG from the tree decomposition. Let η be an

interior node of the tree TD, let η′ be its parent, and let η1, . . . , ηm be its children.

Node η corresponds to an HRG production rule A → R as follows. First, |A| =

|Vη′ ∩ Vη|. Then, R is formed by:

• Adding an isomorphic copy of the vertices in Vη and the edges in Eη

• Marking the (copies of) vertices in Vη′ ∩ Vη as external vertices

• Adding, for each ηi, a nonterminal hyperedge connecting the (copies of) vertices
in Vη ∩ Vηi .

22

3 4

5

4

5 6

5 6

a b
N

Rule

a

b x

T1

T2

N

1 2

3 4

5 6

T1

T2

a

b

n1 n2

n1 n2

Clique Tree (subtree) LHS RHS Original Graph

Figure 3.4. Example of hyperedge replacement grammar rule creation from
an interior vertex of the tree decomposition. Note that lowercase letters
inside vertices are for explanatory purposes only; only the numeric labels

outside external vertices are actually part of the rule.

Figure 3.4 shows an example of the creation of an HRG rule. In this example,

we focus on the middle clique-tree node Vη = {d, e, f}, outlined in bold. We choose

nonterminal symbol N for the LHS, which must have rank 2 because η has 2 ver-

tices in common with its parent. The RHS is a graph whose vertices are (copies

of) Vη = {d, e, f}. Vertices d and e are marked external (and numbered 1 and 2,

arbitrarily) because they also appear in the parent node. The terminal edges are

Eη = {(d, f), (e, f)}. There is only one child of η, and the nodes they have in common

are e and f, so there is one nonterminal hyperedge connecting e and f. Next we deal

with the special cases of the root and leaves.

3.2.3.1 Root Node

If η is the root node, then it does not have any parent cliques, but may still have

one or more children. Because η has no parent, the corresponding rule has a LHS

with rank 0 and a RHS with no external vertices. In this case, we use the start

nonterminal S as the LHS, as shown in Figure 3.5.

The RHS is computed in the same way as the interior node case. For the example

in Fig. 3.5, the RHS has vertices that are copies of c, d, and e. In addition, the

23

3 4

5

4

5 6

2

3 4

5

S
Rule

N

yx

z

T1T2

N

1 2

3 4

5 6

T1T2

n1

n2n3

n4

n5 n1

n2

n3 n4

n5

Clique Tree (subtree) LHS RHS Original Graph

Figure 3.5. Example of hyperedge replacement grammar rule creation from
the root node of the tree decomposition.

RHS has two terminal hyperedges, Eη = {(c, d), (c, e)}. The root node has two

children, so there are two nonterminal hyperedges on the RHS. The right child has

two vertices in common with η, namely, d and e; so the corresponding vertices in the

RHS are attached by a 2-ary nonterminal hyperedge. The left child has three vertices

in common with η, namely, c, d, and e, so the corresponding vertices in the RHS are

attached by a 3-ary nonterminal hyperedge.

2

3 4

5

1

5

2

a b
N

a b

Rule

a

b

x T1

T2

1 2

3 4

5 6

T1

T2

Clique Tree (subtree) LHS RHS Original Graph

Figure 3.6. Example of hyperedge replacement grammar rule creation from
a leaf vertex of the tree decomposition.

24

3.2.3.2 Leaf Node

If η is a leaf node, then the LHS is calculated the same as in the interior node

case. Again we return to the running example in Fig. 3.6 (on the next page). Here,

we focus on the leaf node {a, b, e}, outlined in bold. The LHS has rank 2, because η

has two vertices in common with its parent.

The RHS is computed in the same way as the interior node case, except no

new nonterminal hyperedges are added to the RHS. The vertices of the RHS are

(copies of) the nodes in η, namely, a, b, and e. Vertices b and e are external be-

cause they also appear in the parent clique. This RHS has two terminal hyperedges,

Eη = {(a, b), (a, e)}. Because the leaf clique has no children, it cannot produce any

nonterminal hyperedges on the RHS; therefore this rule is a terminal rule.

3.2.4 Top-Down HRG Rule Induction

We induce production rules from the tree decomposition by applying the above

extraction method top down. Because trees are acyclic, the traversal order does

not matter, yet there are some interesting observations we can make about traver-

sals of moderately sized graphs. First, exactly one HRG rule will have the special

starting nonterminal S on its LHS; no mention of S will ever appear in any RHS.

Similarly, the number of terminal rules is equal to the number of leaf nodes in the

tree decomposition.

Larger graphs will typically produce larger tree decompositions, especially sparse

graphs because they are more likely to have a greater number of small maximal

cliques. These larger tree decompositions will produce a large number of HRG rules,

one for each node in the tree decomposition. Although it is possible to keep track

of each rule and its traversal order, we find, and will later show in the experiments

section, that the same rules often repeat many times.

Figure 3.7 shows the 4 rules that are induced from the tree decomposition illus-

25

S
Rule 1

N

dc

e N

c

1

d

2

e 3

N
Rule 2

c

1

d

2

e 3

bN

b

1

e

2

N
Rule 3

b

1

e

2

a

d

1

e

2

N
Rule 4 d

1

e2 f

Figure 3.7. Complete set of production rules extracted from the example
tree decomposition. Note that lowercase letters inside vertices are for

explanatory purposes only; only the numeric labels outside external vertices
are actually part of the rule.

trated in Fig. 3.1 and used in the running example throughout this section.

3.2.5 Complexity Analysis

The HRG rule induction steps described in this section can be broken into two

steps: (i) creating a tree decomposition and (ii) the HRG rule extraction process.

Unfortunately, finding a tree decomposition with minimal width i.e., the treewidth

tw, is NP-Complete. Let n and m be the number of vertices and edges respectively

in H. Tarjan and Yannikakis’ Maximum Cardinality Search (MCS) algorithm finds

a usable tree decomposition [111] in linear time O(n + m), but is not guaranteed to

be minimal.

The running time of the HRG rule extraction process is determined exclusively

by the size of the tree decomposition as well as the number of vertices in each tree

node. From Defn. 3.1.1 we have that the number of nodes in the tree decomposition

is m. When minimal, the number of vertices in an the largest tree node max(|ηi|)

(minus 1) is defined as the treewidth tw, however, tree decompositions generated

by MCS have max(|ηi|) bounded by the maximum degree of H, denoted as ∆ [36].

26

Therefore, given an elimination ordering from MCS, the computational complexity

of the extraction process is in O(m ·∆).

3.3 Graph Generation

In this section we show how to use the HRG extracted from the original graph H

(as described in the previous section) to generate a new graph H∗. Ideally, H∗ will

be similar to, or have features that are similar to the original graph H. We present

two generation algorithms. The first generation algorithm is exact generation, which,

as the name implies, creates an isomorphic copy of the original graph H∗ ≡ H. The

second generation algorithm is a fast stochastic generation technique that generates

random graphs with similar characteristics to the original graph. Each generation

algorithm starts with H ′ containing only the starting nonterminal S.

3.3.1 Exact Generation

Exact generation operates by reversing the HRG extraction process. In order to

do this, we must make sure to store an ordering of the tentacles in the hyperedges,

as well as the complete tree decomposition TD (or at least the order that the rules

were created). The first HRG rule considered is always the rule with the nonterminal

labelled S as the LHS. This is because the tree traversal starts at the root, and

because the root is the only case that results in S on the LHS.

The previous section defined an HRG G that is constructed from a tree decom-

position TD of some given hypergraph H, and Defn. 3.1.4 defines the application of

a production rule (A → R) that transforms some hypergraph H ′ into a new hyper-

graph H∗. By applying the rules created from the tree decomposition in order, we

will create an H∗ that is isomorphic to the original hypergraph H.

In the remainder of this section, we provide a more intuitive look at the exact

generation property of the HRG by recreating the graph decomposed in the running

27

example.

LHS Application of RHSNew Graph H∗

S

Rule 1

N

yx

z

T
T

N

1 2

3

N

N

Figure 3.8. Application of Rule 1 to replace the starting nonterminal S
with the RHS to create a new graph H∗.

Using the running example from the previous section, the application of Rule 1

illustrated in Fig. 3.8 shows how we transform the starting nonterminal into a new

hypergraph, H∗. This hypergraph now has two nonterminal hyperedges correspond-

ing to the two children that the root clique had in Fig. 3.1. The next step is to replace

H ′ with H∗ and then pick a nonterminal corresponding to the leftmost unvisited node

of the tree decomposition.

LHS Application of RHS New Graph H∗

a b

c

N
Rule 2

a:1 b:2

c:3

x

T T

N

N

N

N

4

21

3

Figure 3.9. Application of Rule 2 to replace a size-3 nonterminal in H ′ with
the RHS to create a new graph H∗.

28

We proceed down the left hand side of the tree decomposition, applying Rule 2

to H ′ as shown in Fig. 3.9. The LHS of Rule 2 matches the 3-ary hyperedge and

replaces it with the RHS, which introduces a new internal vertex, two new terminal

edges and a new nonterminal hyperedge. Again we set H ′ to be H∗ and continue to

the leftmost leaf in the example tree decomposition.

LHS Application of RHS New Graph H∗

a b
N

Rule 3

a:4

21

b:3

x T

T

N

5 4

21

3 N

Figure 3.10. Application of Rule 3 to replace a size-2 nonterminal in H ′

with the RHS to create a new graph H∗.

The leftmost leaf in Fig. 3.1 corresponds to the application of Rule 3; it is the next

to be applied to the new nonterminal in H∗ and replaced by the RHS as illustrated

in Figure 3.10. The LHS of Rule 3 matches the 2-ary hyperedge shown and replaces

it with the RHS, which creates a new internal vertex along with two terminal edges.

Because Rule 3 comes from a leaf node, it is a terminal rule and therefore does not add

any nonterminal hyperedges. This concludes the left subtree traversal from Fig. 3.1.

Continuing the example, the right subtree in the tree decomposition illustrated in

Fig. 3.1 has three further applications of the rules in P . As illustrated in Fig. 3.11,

Rule 4 adds the final vertex, two terminal edges and one nonterminal hyperedge to

H∗.

After all 4 rules are applied in order, we are guaranteed that H and H∗ are

29

LHS Application of RHS New Graph H∗

a b
N

Rule 4
a:2

b:3 x

4

1

5

T

T

N

5 4

21

3 6

N

Figure 3.11. Application of Rule 4 to create an H∗ that is isomorphic to
the original graph H.

isomorphic.

3.3.2 Stochastic Generation

There are many cases in which we prefer to create very large graphs in an efficient

manner that still exhibit the local and global properties of some given example graph

without storing the large tree decomposition as required in exact graph generation.

Here we describe a simple stochastic hypergraph generator that applies rules from

the extracted HRG in order to efficiently create graphs of arbitrary size.

In larger HRGs we usually find many A→ R production rules that are identical.

We can merge these duplicates by matching rule-signatures in a dictionary, and keep

a count of the number of times that each distinct rule has been seen. For example, if

there were some additional Rule 5 in Fig. 3.7 that was identical to, say, Rule 3, then

we would simply note that we saw Rule 3 two times.

To generate random graphs from a probabilistic HRG, we start with the special

starting nonterminal H ′ = S. From this point, H∗ can be generated as follows: (1)

Pick any nonterminal A in H ′; (2) Find the set of rules (A → R) associated with

LHS A; (3) Randomly choose one of these rules with probability proportional to its

count; (4) replace A in H ′ with R to create H∗; (5) Replace H ′ with H∗ and repeat

until there are no more nonterminal edges.

30

However, we find that although the sampled graphs have the same mean size as

the original graph, the variance is much too high to be useful. So we want to sample

only graphs whose size is the same as the original graph’s, or some other user-specified

size. Naively, we can do this using rejection sampling: sample a graph, and if the

size is not right, reject the sample and try again. However, this would be quite slow.

Our implementation uses a dynamic programming approach to do this exactly while

using quadratic time and linear space, or approximately while using linear time and

space. We omit the details of this algorithm here, but the source code is available

online at https://github.com/nddsg/HRG/.

3.3.3 Fixed-Size Generation

A problem we find with the stochastic generation procedure is that, although the

generated graphs have the same median size as the original graph, the variance is

much too high to be useful. So we want to sample only graphs whose size is the

same as the original graph’s, or some other user-specified size. Naively, we can do

this using rejection sampling: sample a graph, and if the size is not right, reject the

sample and try again. However, this would be quite slow. Our implementation uses

a dynamic programming approach to sample a graph with specified size, while using

quadratic time and linear space, or approximately while using linear time and space.

More formally, the learned PHRG defines a probability distribution over graphs,

P (H∗). But rather than sampling from P (H∗), we want to sample from P (H∗ |

|H∗| = n), where n is the desired size.

Here, the stochastic generation sampling procedure is modified to rule out all

graphs of the wrong size, as follows. Define a sized nonterminal X(`) to be a nonter-

minal X together with a size ` > 0. If n is the desired final size, we start with S(n),

and repeatedly:

1. Choose an arbitrary edge labeled with a sized nonterminal (call it X(`)).

31

https://github.com/nddsg/HRG/

2. Choose a rule from among all rules with LHS X.

3. Choose sizes for all the nonterminals in the rule’s RHS such that the total size of
the RHS is `.

4. Choose an ordering of the external vertices of the rule’s RHS, with uniform prob-
ability.

5. Apply the rule.

A complication arises when choosing the rule and the RHS nonterminal sizes (steps

2 and 3) because the weights of these choices no longer form a probability distribution.

Removing graphs with the wrong size causes the probability distribution over graphs

to sum to less than one, and it must be renormalized [87]. To do this, we precompute

a table of inside probabilities α[X, `] for ` = 1, . . . , n, each of which is the total weight

of derivations starting with X and yielding a (sub)graph of size exactly `. These are

computed using dynamic programming, as shown in Algorithm 1.

If X → R is a HRG rule, define size(R) to be the increase in the size of a graph

upon application of rule (X → R). If size is measured in vertices, then size(R) is the

number of internal vertices in R.

Rules that are unary and have zero size require some special care because they do

not change the size of the graph. If there is a unary size-zero rule X → Y , we need

to ensure that α[Y, `] is computed before α[X, `], or else the latter will be incorrect.

Thus, in Algorithm 1, we start by forming a weighted directed graph U whose nodes

are all the nonterminals in N , and for every unary rule X
p−→ Y , there is an edge

from X to Y with weight p. We perform a topological sort on U , and the loop over

nonterminals X ∈ N is done in reverse topological order.

However, if U has a cycle, then no such ordering exists. The cycle could apply

an unbounded number of times, and we need to sum over all possibilities. Algo-

rithm 2 handles this more general case [108]. We precompute the strongly con-

nected components of U , for example, using Tarjan’s algorithm, and for each com-

ponent C, we form the weighted adjacency matrix of C; call this UC . The matrix

32

compute digraph U of unary size-zero rules;
topologically sort U ;
assert (U is acyclic);
for `← 1, . . . , n do

for X ∈ N in reverse topological order do

for rules X
p−→ R do

`′ = `− size(R);
if R has no nonterminals and `′ = 0 then

α[X, `] += p;
end
else if R has nonterminal Y then

α[X, `] += p× α[Y, `′];
end
else if R has nonterminals Y and Z then

for k ← 1, . . . , `′ − 1 do
α[X, `] += p× α[Y, k]× α[Z, `′ − k];

end

end

end

end

end
Algorithm 1: Compute inside probabilities (no cycles of size-zero unary rules)

U∗C =
∑∞

i=0 U
i
C = (I−UC)−1 gives the total weight of all chains of unary rules within

C. So, after computing all the α[X, `] for X ∈ C, we apply the unary rules by treat-

ing the α[X, `] (for X ∈ C) as a vector and left-multiplying it by U∗C . Some tricks

are needed for numerical stability; for details, please see the released source code at

https://github.com/nddsg/PHRG/.

In principle, a similar problem could arise with binary rules. Consider a rule

X → R where R is zero-size and has two nonterminals, Y and Z. If α[Y, 0] > 0, then

α[X, `] is defined in terms of α[Y, `], which could lead to a circularity. Fortunately,

we can avoid such situations easily. Recall that after tree decomposition pruning

(Sec. 3.2.2), every leaf of the tree decomposition has at least one internal vertex. In

terms of HRG rules, this means that if R has no nonterminals, then size(R) > 0.

Therefore, we have α[X, 0] = 0 for all X, and no problem arises.

33

https://github.com/nddsg/PHRG/

compute weighted digraph U of unary size-zero rules;
find strongly connected components (scc’s) of U ;
compute U∗C for each scc C;
for `← 1, . . . , n do

for scc’s C in reverse topological order do
for X ∈ C do

for rules X
p−→ R do

`′ = `− size(R);
if R has no nonterminals and `′ = 0 then

α[X, `] += p;
end
else if R has nonterminal Y and `′ < ` then

α[X, `] += p× α[Y, `′];
end
else if R has nonterminals Y and Z then

for k ← 1, . . . , `′ − 1 do
α[X, `] += p× α[Y, k]× α[Z, `′ − k];

end

end

end

end
for X ∈ C do

α[X, `] =
∑

Y ∈C [U∗C]XY × α[Y, `];
end

end

end
Algorithm 2: Compute inside probabilities (general)

Once we have computed α, we can easily sample a graph of size n using Algo-

rithm 3. Initially, we start with the sized start nonterminal S(n). Then, we repeatedly

choose an edge labeled with a sized nonterminal X(`), use the table α of inside prob-

abilities to recompute the weight of all the rewriting choices quickly, sample one of

them, and apply it.

3.3.4 Pruning Inside Probabilities

The slowest step in the above method is the precomputation of inside probabilities

(Alg. 2), which is quadratic in the number of vertices. To speed up this step up, we

34

H ← S(n);

while H contains a nonterminal X(`) do

for all rules X
p−→ R do

`′ = `− size(R);
if R has no nonterminals and `′ = 0 then

weight[R] = p;
end
else if R has nonterminal Y then

R′ = R{Y 7→ Y (`′)};
weight[R′] = p× α[Y, `′];

end
else if R has nonterminals Y and Z then

for k ← 1, . . . , `′ − 1 do
R′ = R{Y 7→ Y (k), Z 7→ Z(`′−k)};
weight[R′] = p× α[Y, k]× α[Z, `′ − k];

end

end

end
let P (R) = weight[R]/

∑
R′ weight[R′];

sample sized RHS R from P (R);
choose ordering of the external vertices of R;

H ← H{X(`) 7→ R};
end

Algorithm 3: Generate a graph with n nodes

observe that randomly generated graphs tend to be highly unbalanced in the sense

that if a rule has two nonterminal symbols, one is usually much larger than the other

(see Figure 3.12). This is related to the fact, familiar with the study of algorithms,

that random binary search trees tend to be highly unbalanced [103].

Therefore, we can modify Algorithm 2 to consider only splits where at most (say)

1000 nodes go to one nonterminal and the rest of the nodes go the other. This makes

the algorithm asymptotically linear.

3.4 Summary

In this chapter we have shown how to use tree decompositions (also known as junc-

tion trees, clique tree, intersection trees) constructed from a simple, general graph

35

0.001

0.1

0.001

0.1

0.001

0.1

0.001

0.1

0 256 512 768 1024

0.001

0.1

S

N

N

N

N

Figure 3.12. When an HRG rule has two nonterminal symbols, one is
overwhelmingly likely to be much larger than the other. This plot shows,
for various grammar rules (one LHS per row, one RHS per colored line),

the probability (log scale) of apportioning 1024 nodes between two
nonterminal symbols. This plot is best viewed in color.

to learn a hyperedge replacement grammar (HRG) for the original graph. We have

shown that the extracted HRG can be used to reconstruct a new graph that is isomor-

phic to the original graph if the tree decomposition is traversed during reconstruction.

More practically, we show that a stochastic application of the grammar rules creates

new graphs. We also present a fixeds-size graph generator that generates graphs of

exact size.

Perhaps the most important finding that comes from this work is the ability to

interrogate the generation of substructures and subgraphs within the grammar rules

that combine to create a holistic graph. Forward applications of the technology

described in this work may allow us to identify novel patterns analogous to the

previously discovered triadic closure and bridge patterns found in real world social

36

networks. Thus, an investigation in to the nature of the extracted rules and their

meaning (if any) is a top priority for future work.

The next step is evaluate the HRG graph model. We do this by comparing

generated graphs against their empirical counterparts in the next chapter.

37

CHAPTER 4

EVALUATING GRAPH GENERATORS

In this chapter, we show that HRGs contain rules that succinctly represent the

global and local structure of the original graph. Showing this involves comparing

HRG models against some of the state-of-the-art graph generators. We consider the

properties that characterize some real-world networks and examine the distribution of

graphs generated using Kronecker Graphs, the Exponential Random Graph, Chung-

Lu Graphs, and the graphs produced by HRG.

Like HRGs, the Kronecker and Exponential Random Graph Models learn param-

eters that can be used to approximately recreate the original graph H or a graph

of some other size such that the probabilistically generated graph holds many of the

same properties as the original graph. The Chung-Lu graph model relies on node

degree sequences to yield graphs that maintain this distribution.

There are three distinct algorithms presented in the previous chapter: exact (i.e.,

isomorphic) generation, stochastic generation, and fixed-size generation. The exact

generator will generate an isomorphic copy of the original graph; so evaluating the

fit against the original graph is moot. In the stochastic generation, we only pick

generated graphs that have the same size as the original graph, which is a slow and

cumbersome process. However, the resulting graphs will be very very similar to the

fixed-size generation except the fixed-size generator does not require the guess-and-

check method of the stochastic generator. Thus, in all experiments in this chapter

and the next, we will only use the fixed-size HRG generation method.

38

The evaluation metrics, methodology, and result plots were created by myself with

input from Prof. Weninger.

4.1 Real-world Datasets

To get a holistic and varied view of the strengths and weaknesses of HRGs in

comparison to the other leading graph generation models, we consider real-world

networks that exhibit properties that are both common to many networks across

different fields, but also have certain distinctive properties.

TABLE 4.1

EXPERIMENTAL DATASET

Dataset Name Nodes Edges

Karate Club 34 78

Proteins (metabolic) 1,870 2,277

arXiv GR-QC 5,242 14,496

Internet Routers 6,474 13,895

Enron Emails 36,692 183,831

DBLP 317,080 1,049,866

Amazon 400,727 2,349,869

Flickr 105,938 2,316,948

The real-world networks considered in this chapter are described in Table 4.1.

The networks vary in their number of vertices and edges as indicated, but also vary

39

in clustering coefficient, diameter, degree distribution and many other graph proper-

ties. Specifically, Karate Club graph is a network of interactions between members of

a karate club; the Protein network is a protein-protein interaction network of S. cere-

visiae yeast; the Enron graph is the email correspondence graph of the now defunct

Enron corporation; the arXiv GR-QC graph is the co-authorship graph extracted

from the General Relativity and Quantum Cosmology section of arXiv; the Inter-

net router graph is created from traffic flows through Internet peers; DBLP is the

co-authorship graph from the DBLP dataset; Amazon is the co-purchasing network

from March 12, 2003; and, finally, Flickr is a network created from photos taken at

the same location.

In the following experiments, we use the larger networks (arXiv, Routers, Enron,

DBLP, Amazon, Flickr) for network generation and the smaller networks (Karate,

Protein) for a special graph extrapolation task. Datasets were downloaded from the

SNAP and KONECT dataset repositories.

4.2 Methodology

We compare several different graph properties from the four classes of graph

generators (fixed-size HRG, Kronecker, Chung-Lu and exponential random graph

(ERGM) models) to the original graph H. Other models, such as the Erdős-Rényi

random graph model, the Watts-Strogatz small world model, the Barabási-Albert

generator, etc. are not compared here because Kronecker, Chung-Lu and ERGM have

been shown to outperform these earlier models when matching network properties in

empirical networks.

Kronecker graphs operate by learning an initiator matrix and then performing a

recursive multiplication of that initiator matrix to create an adjacency matrix of the

approximate graph. In our case, we use KronFit [75] with default parameters to learn

a 2×2 initiator matrix and then use the recursive Kronecker product to generate the

40

graph. Unfortunately, the Kronecker product only creates graphs where the number

of nodes is a power of 2, i.e., 2x, where we chose x = 15, x = 12, x = 13, and x = 18

for Enron, ArXiv, Routers and DBLP graphs respectively to match the number of

nodes as close as possible.

The Chung-Lu Graph Model takes, as input, a degree distribution and generates

a new graph of the similar degree distribution and size [23].

Exponential Random Graph Models are a class of probabilistic models. Their use-

fulness lies in that they directly describe several structural features of a graph [100].

We used default parameters in R’s ERGM package [50] to generate graph models

for comparison. In addition to the problem of model degeneracy, ERGMs do not

scale well to large graphs. As a result, DBLP, Enron, Amazon, and Flickr could not

be modelled due to their size, and the arXiv graph always resulted in a degenerate

model. Therefore ERGM results are omitted from this section.

The main strength of HRG is to learn the patterns and rules that generate a

large graph from only a few small subgraph-samples of the original graph. So, in

all experiments, we make k random samples of size s node-induced subgraphs by a

breadth first traversal starting from a random node in the graph [70]. By default we

set k = 4 and s = 500 empirically. We then compute tree decompositions from the k

samples, learn HRGs G1, G2, . . . , Gk, and combine them to create a single grammar

G =
⋃
iGi.

Unless otherwise noted, we generate 20 graphs each for the HRG, Chung-Lu, and

Kronecker models and plot the mean values in the results section. We did compute

the confidence intervals for each of the models but omitted them from the graphs

for clarity. In general, the confidence intervals were small for HRG, Kronecker, and

Chung-Lu.

41

4.2.1 Graph Generation Results

Here we compare and contrast the results of approximate graphs generated from

the HRG, Kronecker, and Chung-Lu models. Before presenting each result, we briefly

introduce the graph properties that we used to compare the similarity between the

real networks and their approximate counterparts. Although many properties have

been discovered and detailed in related literature, we focus on five of the principal

properties from which most others can be derived.

100 101 102 103 104

100

101

102

103

104

F
re

q
u
en

cy

Routers

100 101 102 103

100

101

102

103

104

Enron

100 101 102

100

101

102

103

Arxiv

100 101 102 103

100

101

102

103

104

105

k

F
re

q
u

en
cy

DBLP

100 101 102 103

100

101

102

103

104

105

k

Amazon

101 102 103

100

101

102

103

104

k

Flickr

H HRG Chung-Lu Kronecker

Figure 4.1. Degree Distribution. Dataset graphs exhibit a power law degree
distribution that is well captured by existing graph generators as well as

HRG.

42

0 3K 6K

10−20

10−10

100

E
ig

.
C

en
tr

a
li

ty

Routers
θ = 0.0016, 0.0015, 0.0046

0 30K 60K
10−24

10−12

100

Enron
θ = 0.0002, 0.0031, 0.0038

0 3K 6K
10−21

10−10

101

Arxiv
θ = 0.0097, 0.1507, 0.0160

0 300K
10−23

10−11

101

Node

E
ig

.
C

en
tr

al
it

y

DBLP
θ = 0.0649, 0.1181, 0.2879

0 200K 400K

100

10−5

Node

Amazon
θ = 0.0003, 0.0002, 0.1060

0 50K 100K
10−20

10−10

100

Node

Flickr
θ = 0.0001, 0.0013, 0.0014

H HRG Chung-Lu Kronecker

Figure 4.2. Eigenvector Centrality. Nodes are ordered by their
eigenvector-values along the x-axis. Cosine distance between the original

graph and HRG, Chung-Lu and Kronecker models are shown at the top of
each plot where lower is better. In terms of cosine distance, the eigenvector

of HRG is consistently closest to that of the original graph.

4.2.1.1 Global Measures

A key goal of graph modelling to preserve certain network properties of the origi-

nal graph (i.e., H as introduced in 3.1). Graphs generated using HRG, Kronecker, or

Chung-Lu are analyzed by studying their fundamental network properties to assess

how successful the model performs in generating graphs from parameters and pro-

duction rules learned from the input graph. First, we look at the degree distribution,

eigenvector centrality, local clustering coefficient, hop plot, and assortative mixing

characteristics, and draw conclusions on these results.

• Degree Distribution. The degree distribution of a graph is the distribution
of the number of edges connecting to a particular vertex. Figure 4.1 shows the
results of the degree distribution property on the six real-world graphs. Recall

43

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

R
ea

ch
ab

le
P

ai
rs

Routers

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

Enron

0 5 10 15

0

0.2

0.4

0.6

0.8

1

Arxiv

0 5 10 15 20 25

0

0.2

0.4

0.6

0.8

1

Hops

R
ea

ch
a
b
le

P
ai

rs

DBLP

0 5 10 15

0

100K

200K

Hops

Amazon

0 2 4 6 8 10

0

40K

80K

Hops

Flickr

H HRG Chung-Lu Kronecker

Figure 4.3. Hop Plot. Number of vertex pairs that are reachable within
x-hops. HRG closely and consistently resembles the hop plot curves of the

original graph.

that the graph results plotted here and throughout the results section are the
mean averages of 20 generated graphs. Each of the generated graphs is slightly
different from the original graphs in their own way. As expected, we find that
the power law degree distribution is captured by existing graph generators as
well as the HRG model.

• Eigenvector Centrality. The principal eigenvector is often associated with
the centrality or “value” of each vertex in the network, where high values in-
dicate an important or central vertex and lower values indicate the opposite.
A skewed distribution points to a relatively few “celebrity” vertices and many
common nodes.

The principal eigenvector value for each vertex is also closely associated with
the PageRank and degree value for each node. Figure 4.2 shows the eigenvec-
tor scores for each node ranked highest to lowest in each of the six real-world
graphs. Because the x-axis represents individual nodes, Fig. 4.2 also shows
the size difference among the generated graphs. HRG performs consistently
well across all graphs, but the log scaling on the y-axis makes this plot dif-
ficult to discern. To more concretely compare the eigenvectors, the pairwise

44

cosine distance between eigenvector centrality of H and the mean eigenvector
centrality of each model’s generated graphs appear at the top of each plot in
order. HRG consistently has the lowest cosine distance followed by Chung-Lu
and Kronecker.

• Hop Plot. The hop-plot of a graph shows the number of vertex-pairs that
are reachable within x hops. The hop-plot, therefore, is another way to view
how quickly a vertex’s neighborhood grows as the number of hops increases.
As in related work [73] we generate a hop-plot by picking 50 random nodes
and performing a complete breadth first traversal over each graph. Figure 4.3
demonstrates that HRG graphs produce hop-plots that are remarkably similar
to the original graph.

100 102 104

0.001

0.01

0.1

M
ea

n
C

C

Routers

101 102 103

0.1

0.01

0.001

Enron

101 102

0.1

0.01

Arxiv

101 102 103

0.1

0.001

Degree

M
ea

n
C

C

DBLP

100 101 102

0.1

0.01

0.001

0

Degree

Amazon

101 102 103

0.1

0.01

Degree

Flickr

H HRG Chung-Lu Kronecker

Figure 4.4. Mean Clustering Coefficient by Node Degree. HRG closely and
consistently resembles the clustering coefficients of the original graph.

• Mean Clustering Coefficients. A vertex’s clustering coefficient is a mea-

45

100 101 102 103

101

102

103

A
ss

o
rt

a
ti

v
it

y

Routers

100 101 102 103
100

101

102

103

Enron

100 101 102

100.5

101

101.5
Arxiv

100 101 102 103
100.5

101

101.5

k

A
ss

o
rt

a
ti

v
it

y

DBLP

a

100 101 102

100.5

101

101.5

k

Amazon

100 101 102 103
101

102

103

k

Flickr

H HRG Chung-Lu Kronecker

Figure 4.5. Local Degree Assortativity. HRG, Chung-Lu, and Kronecker
graphs show mixed results with no clear winner.

sure of how well connected its neighbors are [119]. For each vertex in the graph,
its clustering coefficient is the ratio of the number of edges in its ego-network
(i.e., local neighborhood) to the total number of possible edges that could exist
if the vertex’s neighborhood was a clique. Calculating the clustering coefficient
for each node is a computationally difficult task and difficult plot aesthetically,
so we sampled 100 nodes from the graph randomly. Figure 4.4 shows the aver-
age clustering coefficients for the sampled nodes as a function of its degree in
the graph. Like the results from Seshadhri et al., we find that the Kronecker
and Chung-Lu models perform poorly at this task [104].

• Local Degree Assortativity. The global degree assortativity of a graph
measures its tendency to have high-degree vertices connect to high-degree ver-
tices and vice versa measured as a Pearson correlation coefficient. The local
degree assortativity is measured for each vertex as the amount that each vertex
contributes to the overall correlation, i.e., how different the vertex is from its
neighbors. Figure 4.5 shows the degree assortativity for each vertex from each
generated graph.

The last three graph metrics, k-core, local clustering coefficient, and local de-
gree assortativity, all showed a relatively poor performance of the Chung-Lu
and Kronecker graph generators. HRG modelled the k-core and local clus-
tering coefficients rather well but had inconsistent results in the local degree

46

assortativity plots.

47

TABLE 4.2: GRAPHLET STATISTICS AND CORRELATION DISTANCE

Graphs GCD

Routers 13511 1397413 9863 304478 6266541 177475 194533149 18615590
HRG 13928 1387388 9997 288664 6223500 174787 208588200 18398430 1.41
Kronecker 144 61406 0 80 10676 973 642676 551496 2.81
Chung-Lu 4787 356897 6268 81403 1651445 13116 35296782 4992714 2.00

Enron 727044 23385761 2341639 22478442 375691411 6758870 4479591993 1371828K
HRG 79131 4430783 49355 554240 13123350 556760 688165900 54040090 0.51
Kronecker 2598 5745412 1 1011 608566 49869 1.89468000 141065K 2.88
Chung-Lu 322352 23590260 1191770 16267140 342570000 10195620 3967912K 2170161K 1.33

arXiv 89287 558179 320385 635143 4686232 382032 11898620 7947374
HRG 88108 606999 320039 656554 5200392 455516 15691941 9162859 1.10
Kronecker 436 224916 1 293 47239 4277 3280822 2993351 2.10
Chung-Lu 927 232276 6 967 87868 11395 2503333 3936998 1.82

DBLP 2224385 15107734 16713192 4764685 96615211 203394 258570802 25244735
HRG 1271520 7036423 1809570 2716225 26536420 296801 71099374 28744359 1.59
Kronecker 869 21456020 0 25 150377 11568 517370300 367981K 2.82
Chung-Lu 1718 22816460 740 91 306993 27856 453408500 495492K 1.73

Amazon 5426197 81876562 4202503 39339842 306482275 10982173K 11224584 1511382K
HRG 4558006 90882984 3782253 35405858 275834K 12519677K 10326617 1556723K –
Kronecker 11265 118261600 40 1646 4548699 350162 6671637K 4752968K –
Chung-Lu 4535 71288780 21 6376 5874750 95323 11008170K 2134629K –

Flickr 24553 3754965 1612 38327 2547637 63476 197979760 30734524
HRG 24125 4648108 1600 39582 3130621 68739 409838400 41498780 –
Kronecker 679294 494779400 16068 4503724 951038K 78799K 96664230K 76331M –
Chung-Lu 7059002 787155400 5003082 313863800 12826040K 1513807K 168423M 247999M –

48

4.2.2 Canonical Graph Comparison

The previous network properties primarily focus on statistics of the global net-

work. However, there is mounting evidence which argues that the graphlet compar-

isons are a complete way to measure the similarity between two graphs [98, 116].

The graphlet distribution succinctly describes the number of small, local substruc-

tures that compose the overall graph and therefore more completely represents the

details of what a graph “looks like.” Furthermore, it is possible for two very dissim-

ilar graphs to have the same degree distributions, hop plots, etc., but it is difficult

for two dissimilar graphs to fool a comparison with the graphlet distribution.

Table 4.21 shows the mean graphlet counts over 10 runs for each graph generator.

We find that graphlet counts for the graphs generated by HRG follow the original

counts more closely, and in many cases much more closely, than the Kronecker and

Chung-Lu graphs.

4.2.2.1 Graphlet Correlation Distance

Recent work from systems biology has identified a new metric called the Graphlet

Correlation Distance (GCD). The GCD computes the distance between two graphlet

correlation matrices – one matrix for each graph [122]. It measures the frequency

of the various graphlets present in each graph, i.e., the number of edges, wedges,

triangles, squares, 4-cliques, etc., and compares the graphlet frequencies of each node

across two graphs. Because the GCD is a distance metric, lower values are better. The

GCD can range from [0,+∞], where the GCD is 0 if the two graphs are isomorphic.

The rightmost column in Tab. 4.2 shows the GCD results. Unfortunately, the

node-by-node graphlet enumerator used to calculate the GCD [122] could not pro-

1Six real-world graphs. First row of each section shows the original graph’s graphlet counts,
remaining row shows mean counts of 10 runs for each graph generator. We find that the HRG
model generates graphs that closely approximate the graphlet counts of the original graph.

49

cess the large Amazon and Flickr graphs, so only the summary graphlet counts are

listed for the two larger graphs [5]. The results here are clear: HRG significantly

outperforms the Chung-Lu and Kronecker models. The GCD opens a whole new line

of network comparison methods that stress the graph generators in various ways. We

explore many of these options next.

4.2.3 Graph Extrapolation

Recall that HRG learns the grammar from k = 4 subgraph-samples from the

original graph. In essence, HRG is extrapolating the learned subgraphs into a full-

size graph. This raises the question: if we only had access to a small subset of some

larger network, could we use our models to infer a larger (or smaller) network with

the same local and global properties? For example, given the 34-node Karate Club

graph, could we infer what a Karate Club might look like if it’s membership doubled?

Using two smaller graphs, Zachary’s Karate Club (34 nodes, 78 edges) and the

protein-protein interaction network of S. cerevisiae yeast (see Table 4.1), we learned

an HRG model with k = 1 and s = n, i.e., no sampling, and generated networks of

size-n∗ = 2x, 3x, . . . , 32x. For the protein graph, we also sampled down to n∗ = x/8.

Powers of 2 were used because the standard Kronecker model can only generate graphs

of that size. The Chung-Lu model requires a size-n∗ degree distribution as input. To

create the proper degree distribution we fitted a Poisson distribution (λ = 2.43) and

a Geometric Distribution (p = 0.29) to Karate and Protein graphs respectively and

drew n∗ degree-samples from their respective distributions. In all cases, we generated

20 graphs at each size-point.

Rather than comparing raw numbers of graphlets, the GCD metric compares

the correlation of the resulting graphlet distributions. As a result, GCD is largely

immune to changes in graph size. Thus, GCD is a good metric for this extrapolation

task. Figure 4.6 shows the mean GCD scores; not only does HRG generate good

50

1 2 4 8 16 32

1

2

3

4

5

Size Multiple

G
C

D

Karate Club

1/8 1/4 1/2 1 2 4 8 16 32

1

2

3

4

5

Size Multiple

G
C

D

Protein

HRG Chung-Lu Kronecker

Figure 4.6. GCD of graphs extrapolated in multiples up to 32x from two
small graphs. HRG outperforms Chung-Lu and Kronecker models when

generating larger graphs. Lower is better.

results at n∗ = 1x, the GCD scores remain mostly level as n∗ grows.

4.2.4 Sampling and Grammar Complexity

We have shown that HRG can generate graphs that match the original graph from

k = 4 samples of s = 500-node subgraphs. If we adjust the size of the subgraph, then

the size of the tree decomposition will change causing the grammar to change in size

and complexity. A large tree decomposition ought to create more rules and a more

complex grammar, resulting in a larger model size and better performance; while a

small tree decomposition ought to create fewer rules and a less complex grammar,

resulting in a smaller model size and a lower performance.

To test this hypothesis, we generated graphs by varying the number of subgraph

samples k from 1 to 32, while also varying the size of the sampled subgraph s from 100

to 600 nodes. Again, we generated 20 graphs for each parameter setting. Figure 4.7

51

50 100 150 200 250 300 350 400 450 500 550 600 650

0

1,000

2,000

3,000

4,000

5,000

Subgraph Size

M
o
d

el
S

iz
e

Routers

Samples
1
2
4
8
16
32

Figure 4.7. HRG model size as the subgraph size s and the number of
subgraph samples k varies. The model size grows linearly with k and s.

shows how the model size grows as the sampling procedure changes on the Internet

Routers graph. Plots for other graphs show a similar growth rate and shape but are

omitted due to space constraints.

To test the statistical correlation we calculated Pearson’s correlation coefficient

between the model size and sampling parameters. We find that the k is slightly

correlated with the model size on Routers (r = 0.31, p = 0.07), Enron (r = 0.27, p =

0.09), arXiv (r = 0.21, p = 0.11), and DBLP (r = 0.29, p = 0.09). Furthermore,

the choice of s affects the size of the tree decomposition from which the grammars

are inferred. So its not surprising that s is highly correlated with the model size on

Routers (r = 0.64), Enron (r = 0.71), arXiv (r = 0.68), and DBLP (r = 0.54) all

with p� 0.001.

Because we merge identical rules when possible, we suspect that the overall growth

of the HRG model follows Heaps law [46], i.e., that the model size of a graph can

be predicted from its rules; although we save a more thorough examination of the

grammar rules as a matter for future work.

52

4.2.4.1 Model Size and Performance

One of the disadvantages of the HRG model, as indicated in Fig. 4.7, is that the

model size can grow to be very large. But this again begs the question: do larger

and more complex HRG models result in improved performance?

To answer this question, we computed the GCD distance between the original

graph and graphs generated by varying k and s. Figure 4.8 illustrates the relation-

ship between model size and the GCD. We use the Router and DBLP graphs to

shows the largest and smaller of our datasets; other graphs show similar results, but

we omit their plots due to space. Surprisingly, we find that the performance of mod-

els with only 100 rules is similar to the performance of the largest models. In the

Router results, two very small models with poor performance had only 18 and 20

rules each. Best fit lines are drawn to illustrate the axes relationship where negative

slope indicates that larger models perform better. Outliers can dramatically affect

the outcome of best-fit lines, so the faint line in the Routers graph shows the best

fit line if we remove the two square outlier points. Without removing outliers, we

find only a slightly negative slope on the best fit line indicating only a slight per-

formance improvement between HRG models with 100 rules and HRG models with

1,000 rules. Pearson’s correlation coefficient comparing GCD and model size simi-

larly show slightly negative correlations on Routers (r = −0.12, p = 0.49), Enron

(r = −0.09, p = 0.21), ArXiv (r = 0.04, p = 0.54), and DBLP (r = −0.08, p = 0.62)

4.2.4.2 Runtime Analysis

The overall execution time of the HRG model is best viewed in two parts: (1)

rule extraction, and (2) graph generation.

Unfortunately, finding a tree decomposition with minimal width i.e., the treewidth

tw, is NP-Complete. Let n and m be the number of vertices and edges respectively

in H. Tarjan and Yannikakis’ Maximum Cardinality Search (MCS) algorithm finds

53

102 103
1

2

3

4

5

−0.37x + 4.35

−0.1x + 2.58

Model Size
G

C
D

Routers

102 103 104

1

2

3

4

5

−.08x + 1.21

Model Size

G
C

D

DBLP

Figure 4.8. GCD as a function of model size. We find a slightly negative
relationship between model size and performance, but with quickly

diminishing returns. We show best-fit lines and their equations; the shorter
fit line in the Routers plot ignores the square outlier points.

usable tree decompositions [113] in linear time O(n + m), but is not guaranteed to

be minimal.

The running time of the HRG rule extraction process is determined exclusively

by the size of the tree decomposition as well as the number of vertices in each tree

node. From Defn. 3.1.1 we have that the number of nodes in the tree decomposition

is m. When minimal, the number of vertices in the largest tree node max(|ηi|) (minus

1) is defined as the treewidth tw. However, tree decompositions generated by MCS

have max(|ηi|) bounded by the maximum degree of H and is denoted as ∆ [36].

Therefore, given an elimination ordering from MCS, the computational complexity

of the extraction process is in O(m ·∆). In our experiments, we perform k samples of

size-s subgraphs. So, when sampling with k and s, we amend the runtime complexity

to be O(k · m · ∆) where m is bounded by the number of hyperedges in the size-s

subgraph sample and ∆ ≤ s.

Graph generation requires a straightforward application of rules that is linear in

the number of edges in the output graph.

We performed all experiments on a modern consumer-grade laptop in an unop-

timized, unthreaded python implementation. We recorded the extraction time while

54

102 103

100

101

102

0.88x + 0.16

Model Size

In
fe

re
n
ce

T
im

e
(s

ec
)

Routers

102 103 104

101

102

103

1.05x− 2.42

Model Size

In
fe

re
n
ce

T
im

e
(s

ec
)

DBLP

Figure 4.9. Total extraction runtime (i.e., tree decomposition creation and
rule extraction) as a function of model size. Best fit lines on the log-log
plot show that the execution time grows linearly with the model size.

generating graphs for the size-to-GCD comparison in the previous section. Although

the runtime analysis gives theoretical upper bounds to the rule extraction process,

Fig. 4.9 shows that the extraction runtime is highly correlated to the size of the model

in Routers (r = 0.68), arXiv (r = 0.91), Enron (r = 0.88), and DBLP (r = 0.94) all

with p� 0.001. Simply put, more rules require more time, but there are diminishing

returns. So it may not be necessary to learn complex models when smaller HRG

models tend to perform reasonably well.

By comparison, the Kronecker graph generator learns a model in O(m) and can

create a graph in O(m). The Chung-Lu model does not learn a model, but rather

takes, as input, a degree sequence; graph generation is in O(n+m).

4.2.4.3 Graph Guarantees

In earlier work we showed that an application of HRG rules corresponding to a

traversal of the tree decomposition will generate an isomorphic copy of the original

graph [4].

Unlike the Kronecker and Chung-Lu graph generators, which are guaranteed to

generate graph with power-law degree distributions, there are no such guarantees that

can be made about the shape of graphs generated by HRGs. The reason is straight-

55

forward: the HRG generator is capable of applying rules in any order, therefore, a

wide variety of graphs are possible, although improbable, given an HRG grammar.

But the lack of a formal guarantees give the HRG model flexibility to model

a large variety of graphs. For example, given a line-graph, the HRG model will

generate a new graph that looks, more-or-less, like a line-graph. If given a random

graph, characterized by a binomial degree distribution, then HRG is likely to generate

a new graph with a binomial degree distribution.

4.3 Summary

This chapter describes results of various experiments that compare generated

graphs against its original graph. We also performed experiments using graphlet

correlation distance, graph extrapolation, and the infinity mirror test. The analysis

of the results is particularly exciting because the results show a stark improvement

in performance over several existing graph generators.

Next, we will investigate differences between the grammars extracted from dif-

ferent tree-decompositions. Within the computational theory community, there has

been a renewed interest in quickly finding tree-decompositions of large real-world

graphs that are closer to optimal. Because of the close relationship of HRG and

tree-decompositions are shown in this thesis, any advancement in tree decomposition

algorithms could directly improve the speed and accuracy of graph generation.

56

CHAPTER 5

INFINITY MIRROR TEST FOR ANALYZING GRAPH GENERATORS

Viewing data as an information network, the standard approach is to treat the

network as a graph with some number of nodes and edges. Increasingly, researchers

and practitioners are interested in understanding how individual pieces of informa-

tion are organized and interact to discover the fundamental principles that underlie

physical or social phenomena.

With this motivation, researchers have developed a suite of graph generation

techniques that learn a model of a network in order to extrapolate, generalize or

otherwise gain a deeper understanding of the data set. Early graph generators like the

Erdős-Rényi, Watts-Strogatz, and Barabasi-Albert models produce random graphs,

small world graphs, and scale-free graphs respectively. Although they are used to

generate graphs given some hand-picked parameters, they do not learn a model from

any observed real-world network [9].

We focus instead on graph model inducers, which take some observed network H,

learn a model Θ and produce a new graph H ′. These types of graph generators include

the Kronecker Model [75], Chung-Lu Model [23], Exponential Random Graph Model

(ERGM) [100] and Block Two-Level Erdős-Rényi Model (BTER) [96], and others.

The performance of a graph generator can be judged based on how well the new

graph matches certain topological characteristics of the original graph. Unfortunately

small perturbations caused by the implicit and inherent biases of each type of model

may not be immediately visible using existing performance metrics.

57

G

Θ1

.9 .5

.5 .1

[]
fit gen

G′1

.8 .6

.6 .2

[]
Θ2

fit gen

G′2

Θ3...k

fit gen
. . .

G′k

Figure 5.1: Example infinity mirror test on the Kronecker model. This test recursively
learns a model and generates graphs. Although not apparent in H ′1, this example
shows a particular type of degeneration where the model loses edges.

In the present work, we address this problem by characterizing the robustness of a

graph generator via a new metric we call the infinity mirror test. The “infinity mirror”

gets its name from the novelty item with a pair of mirrors, set up so as to create a series

of smaller and smaller reflections that appear to taper to an infinite distance. The

motivating question here is to see if a generated graph H ′ holds sufficient information

to be used as reference. Although a comparison between H and H ′ may show accurate

results, the model’s biases only become apparent after recursive application of the

model onto itself.

The details of the method are discussed later, but, simply put, the infinity mirror

tests the robustness of a graph generator because errors (or biases) in the model are

propagated forward depending on their centrality and severity. A robust graph gen-

erator, without severe biases or errors, should remain stable after several recurrences.

However, a non-robust model will quickly degenerate, and the manner in which the

model degenerates reveals the model-biases that were hidden before.

The infinity mirror test was conceived by myself with input from Prof. Weninger.

The evaluation, methodology and result plots were created by myself.

5.1 Infinity Mirror Test

We characterize the robustness of a graph generator by its ability to learn and

regenerate the same model repeatedly. A perfect, lossless model (e.g., Θ = H) would

58

generate H ′ as an isomorphic copy of the original graph. If we were to again apply

the perfect model on the isomorphic H ′, we would again generate an isomorphic copy

of the graph. On the other hand, a non-robust graph generator may generate a H ′

that is dissimilar from H. If we were to learn a new model from H ′ and create a

second-level graph, we would expect this second graph to exacerbate the errors (the

biases) that the first graph made and be even less similar to H. A third, fourth, fifth,

etc. application of the model will cause the initial errors to accumulate and cause

cascading effects in each successive layer.

Colored by this perspective, the robustness of a graph generator is defined by

its ability to maintain its topological properties as it is recursively applied. To that

end, this chapter presents the infinity mirror test. In this test, we repeatedly learn a

model from a graph generated by the an earlier version of the same model.

Starting with some real world network H, a graph generator learns a model Θ1

(where the subscript ·1 represents the first recurrence) and generates a new graph H ′1.

At this point, current works typically overlay graph properties like degree distribution,

assortativity, etc. to see how well H matches H ′1. We go a step further and ask if the

new graph H ′1 holds sufficient information to be used as reference itself. So, from H ′1

we learn a new model Θ2 in order to generate a second-level graph H ′2. We repeat

this recursive “learn a model from the model”-process k times, and compare H ′k with

the original graph.

Figure 5.1 shows an example of the infinity mirror test for the Kronecker model. In

this example some real world graph H is provided by the user. From H a model Θ1 is

fit, which is used to generate a new graph H ′1. Of course, H ′1 is only an approximation

of H and is therefore slightly different. In the second recurrence a new model Θ2 is

fit from H ′1 and used to generate a new graph H ′2. This continues recursively k times.

With the infinity mirror test, our hypothetical, perfect model is perfectly robust

and immune to error. A hypothetical “bad” model would quickly degenerate into

59

an unrecognizable graph after only a few recurrences. Despite their accurate per-

formance, existing models are far from perfect. We expect to see that all models

degenerate as the number of recurrences grow. The question is: how quickly do the

models degenerate and how bad do the graphs become?

5.2 Experiments

In order to get a holistic and varied view of the robustness of various graph

generators, we consider real-world networks that exhibit properties that are both

common to many networks across different fields, but also have certain distinctive

properties.

The real world networks considered in this chapter are described in Table. 5.1,

many of which overlap from chapter 4. The networks vary in their number of vertices

and edges as indicated, but also vary in clustering coefficient, degree distribution

and many other graph properties. Specifically, C. elegans is the neural network of

the roundworm of the named species [51]; the Power grid graph is the connectivity

of the power grid in the Western United States [118]; the Enron graph is the email

correspondence graph of the now defunct Enron corporation [59]; the ArXiv GR-

QC graph is the co-authorship graph extracted from the General Relativity and

Quantum Cosmology section of ArXiv; the Internet router graph is created from

traffic flows through Internet peers; and, finally, DBLP is the co-authorship graph

from the DBLP dataset. All datasets were downloaded from the SNAP and KONECT

dataset repositories. On each of the six real-world graphs, we applied the Kronecker,

Block Two-Level Erdos-Renyi (BTER), Exponential Random Graph (ERGM) and

Chung- Lu (CL) models recursively to a depth of k=10.

Figures 5.2, 5.3, 5.4, and 5.5 show the results of the Chung-Lu, BTER and Kro-

necker graphs respectively. Different graph generators will model and produce graphs

60

TABLE 5.1

REAL NETWORKS

Dataset Name Nodes Edges

C. elegans neural (male) 269 2,965

Power grid 4,941 6,594

ArXiv GR-QC 5,242 14,496

Internet Routers 6,474 13,895

Enron Emails 36,692 183,831

DBLP 317,080 1,049,866

according to their own internal biases. Judging the performance of the generated

graphs typically involves comparing various properties of the new graph with the

original graph. In Figs. 5.2–5.5 we show the plots of the degree distribution, eigen-

vector centrality, hop plots and graphlet correction distance. Each subplot shows

the original graph in blue and the generated graphs H ′2, H
′
5, H

′
8, H

′
10 in increasingly

lighter shades of red.

In the remainder of this section we will examine the results one metric at a time,

i.e., figure-by-figure.

5.2.1 Network Statistics or Measures

5.2.1.1 Degree Distribution

The degree distribution of a graph is the ordered distribution of the number of

edges connecting to a particular vertex. Barabási and Albert initially discovered that

the degree distribution of many real world graphs follows a heavy-tailed power law

distribution such that the number of nodes Nd ∝ d−γ where γ > 0 and γ, called the

power law exponent, is typically between 2 and 3 [8].

61

100 101 102

100

101

k

fr
eq

u
en

cy

C.elegans

100 101

100

101

102

103

k

fr
eq

u
en

cy

Power

100 101 102

100

101

102

103

k

fr
eq

u
en

cy

Arxiv

100 101 102 103

100

101

102

103

104

k

fr
eq

u
en

cy

Routers

100 101 102 103

100

101

102

103

104

k

fr
eq

u
en

cy

Enron

100 101 102

100

102

104

k

fr
eq

u
en

cy

DBLP

Chung Lu

100 101 102

100

101

k

fr
eq

u
en

cy

C.elegans

100 101

100

101

102

103

k

fr
eq

u
en

cy

Power

100 101 102

100

101

102

103

k

fr
eq

u
en

cy

Arxiv

100 101 102 103

100

101

102

103

k

fr
eq

u
en

cy

Routers

100 101 102 103

100

101

102

103

104

k

fr
eq

u
en

cy

Enron

100 101 102 103

100

101

102

103

104

105

k

fr
eq

u
en

cy

DBLP

BTER

100 101 102

100

101

k

fr
eq

u
en

cy

C.elegans

100 101

100

101

102

103

k

fr
eq

u
en

cy

Power

100 101 102

100

101

102

103

k

fr
eq

u
en

cy

ArXiv

100 101 102 103

100

101

102

103

k

fr
eq

u
en

cy

Routers

100 101 102 103

100

101

102

103

104

k

fr
eq

u
en

cy

Enron

100 101 102

100

101

102

103

104

105

k

fr
eq

u
en

cy

DBLP

Kronecker
H H ′2 H ′5 H ′8 H ′10

Figure 5.2. Degree distribution. H shown in blue. H ′2, H
′
5, H

′
8 and H ′10 are

shown in lighter and lighter shades of red. Degeneration is observed when
recurrences increasingly deviate from H. The results for some Kronecker

models are missing because they were unable to generate graphs for
non-scale-free graphs.

Figure 5.2 shows the degree distribution of Chung Lu, BTER and Kronecker

row-by-row for each of the six data sets. The Kronecker generator was unable to

model the C. elegans graph because C. elegans does not have a power-law degree

distribution, thus those results are absent. These plots are drawn with the original

graph H in blue first, then H ′2, H
′
5, H

′
8 and H ′10 are overlaid on top in that order; as

a result, light-red plots often elide dark-red or blue plots indicating accurate results

and non-degeneration. In general, we find that the degree distributions hold mostly

steady throughout all 10 recurrences. One exception is present in the Power grid

dataset for all three graph generators where the later graphs lose density in the head

of their degree distribution. But overall the results are surprising stable.

62

0 100 200
10−20

10−13

10−6

101

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

C.elegans

0 1,000 2,000 3,000 4,000
10−21

10−14

10−7

100

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Power

0 1,000 2,000 3,000 4,000 5,000
10−23

10−15

10−7

101

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Arxiv

0 2,000 4,000 6,000
10−23

10−15

10−7

101

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Routers

0 1 2 3

·104

10−22

10−15

10−8

10−1

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Enron

0 1 2 3

·105

10−24

10−16

10−8

100

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

DBLP

Chung Lu

0 100 200
10−19

10−13

10−7

10−1

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

C.elegans

0 1,000 2,000 3,000 4,000
10−20

10−13

10−6

101

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Power

0 1,000 2,000 3,000 4,000 5,000
10−22

10−15

10−8

10−1

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Arxiv

0 2,000 4,000 6,000
10−21

10−14

10−7

100

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Routers

0 1 2 3

·104

10−23

10−15

10−7

101

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Enron

0 1 2 3

·105

10−23

10−15

10−7

101

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

DBLP

BTER

0 1,000 2,000 3,000 4,000 5,000
10−22

10−15

10−8

10−1

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Arxiv

0 1,000 2,000 3,000
10−23

10−15

10−7

101

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Power

0 1,000 2,000 3,000 4,000 5,000
10−22

10−15

10−8

10−1

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Arxiv

0 2,000 4,000 6,000
10−21

10−14

10−7

100

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Power

0 1 2 3

·104

10−21

10−14

10−7

100

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

Enron

0 1 2 3

·105

10−15

10−10

10−5

100

Node

E
ig

en
ve

ct
or

C
en

tr
al

it
y

DBLP

Kronecker
H H ′2 H ′5 H ′8 H ′10

Figure 5.3. Eigenvector centrality. H shown in blue. Results for
recurrences H ′2, H

′
5, H

′
8 and H ′10 in lighter and lighter shades of red showing

eigenvector centrality for each network node. Degeneration is shown by
increasing deviation from H’s eigenvector centrality signature.

5.2.1.2 Eigenvector Centrality

The principal eigenvector is often associated with the centrality or “value” of each

vertex in the network, where high values indicate an important or central vertex and

lower values indicate the opposite. A skewed distribution points to a relatively few

“celebrity” vertices and many common nodes. The principal eigenvector value for

each vertex is also closely associated with the PageRank and degree value for each

node.

Figure 5.3 shows an ordering of nodes based on their eigenvector centrality. Again,

the results of Kronecker on C. elegans is absent. With the eigenvector centrality

metric we see a clear case of model degeneration in several data sets, but stability

in others. The arXiv graph degenerated in Chung-Lu and BTER, but was stable

in Kronecker. On the other hand, the Power grid and Routers graph had only a

63

0 2 4

0

50

100

150

Hops

R
ea

ch
ab

le
P

ai
rs

C.elegans

0 10 20 30 40

0

200

400

600

800

Hops

R
ea

ch
ab

le
P

ai
rs

Power

0 5 10

0

500

1,000

1,500

Hops

R
ea

ch
ab

le
P

ai
rs

Arxiv

0 2 4 6 8

0

1,000

2,000

Hops

R
ea

ch
ab

le
P

ai
rs

Routers

0 2 4 6 8 10

0

0.5

1

1.5

·104

Hops

R
ea

ch
ab

le
P

ai
rs

Enron

0 5 10 15

0

0.5

1

·105

Hops

R
ea

ch
ab

le
P

ai
rs

DBLP

Chung Lu

0 2 4 6

0

50

100

150

Hops

R
ea

ch
ab

le
P

ai
rs

C.elegans

0 10 20 30 40

0

500

1,000

Hops

R
ea

ch
ab

le
P

ai
rs

Power

0 5 10

0

500

Hops

R
ea

ch
ab

le
P

ai
rs

ArXiv

0 5 10

0

1,000

2,000

Hops

R
ea

ch
ab

le
P

ai
rs

Routers

0 2 4 6 8 10 12

0

0.5

1

1.5

·104

Hops

R
ea

ch
ab

le
P

ai
rs

Enron

0 5 10 15

0

0.5

1
·105

Hops

R
ea

ch
ab

le
P

ai
rs

DBLP

BTER

0 2 4

0

50

100

150

Hops

R
ea

ch
ab

le
P

ai
rs

C.elegans

0 10 20 30 40 50

0

200

400

Hops

R
ea

ch
ab

le
P

ai
rs

Power

0 5 10 15

0

500

1,000

Hops

R
ea

ch
ab

le
P

ai
rs

Arxiv

0 10 20 30 40 50

0

1,000

2,000

Hops

R
ea

ch
ab

le
P

ai
rs

Routers

0 2 4 6 8 10 12

0

0.5

1

·104

Hops

R
ea

ch
ab

le
P

ai
rs

Enron

0 5 10 15

0

0.5

1

·105

Hops

R
ea

ch
ab

le
P

ai
rs

DBLP

Kronecker
H H ′2 H ′5 H ′8 H ′10

Figure 5.4. Hop plot. H shown in blue. Results for recurrences H ′2, H
′
5, H

′
8

and H ′10 in lighter and lighter shades of red. Degeneration is observed when
recurrences increasingly deviate from H.

slight degeneration with Chung Lu and BTER models, but severe problems with the

Kronecker model.

5.2.1.3 Hop Plot

The hop plot of a graph shows the number of vertex-pairs that are reachable

within x hops. The hop plot, therefore, is another way to view how quickly a vertex’s

neighborhood grows as the number of hops increases. As in related work [72] we

generate a hop plot by picking 50 random nodes and perform a breadth first traversal

over each graph.

Figure 5.3 shows the hop plots of each graph, model and recurrence level. Again

we find mixed results. Model degeneration is clear in the arXiv results for Chung

Lu and BTER: we see a consistent flattening of the hop plot line recurrence-level

64

increases. Yet the arXiv results are consistent with the Kronecker model.

The hop plot results are quite surprising in many cases. All of the models severely

underestimate the shape of the power grid and routers graphs even in the first gen-

eration (not shown).

Of the many topological characteristics that could be compared, researchers and

practitioners typically look at a network’s global properties as in Figs 5.2–5.3. Al-

though these metrics can be valuable, they do not completely test the performance

of a graph generator.

In our view, a large network is essentially the combination of many small sub-

networks. Recent work has found that the global properties are merely products of a

graph’s local properties, in particular, graphlet distributions [98]. As a result, graphlet

counting [5, 80, 115] and related comparison metrics [122] comprise the local-side of

graph generator performance.

Thus a complete comparison of graph generator performance ought to include

both local and global metrics. In other words, not only should a generated graph

have the same degree distribution, hop plot, etc. as the original graph, but the new

graph should also have the same number of triangles, squares, 4-cliques, etc. as the

original graph.

There is mounting evidence which argues that the graphlet distribution is the most

complete way to measure the similarity between two graphs [98, 115]. The graphlet

distribution succinctly describes the distribution of small, local substructures that

compose the overall graph and therefore more completely represents the details of

what a graph “looks like.” Furthermore, it is possible for two very dissimilar graphs to

have the same degree distributions, hop plots, etc., but it is difficult for two dissimilar

graphs to fool a comparison with the graphlet distribution.

65

2 4 6 8 10

2

4

Recurrence

G
C

D

C.elegans

2 4 6 8 10

2

4

Recurrence

G
C

D

Power

2 4 6 8 10

1

2

3

4

Recurrence

G
C

D

Arxiv

2 4 6 8 10

2

4

Recurrence

G
C

D

Routers

2 4 6 8 10

2

4

Recurrence

G
C

D

Enron

2 4 6 8 10

2

4

Recurrence

G
C

D

DBLP

Chung-Lu BTER Kronecker

Figure 5.5. Graphlet Correlation Distance. All recurrences are shown for
Chung Lu, BTER and Kronecker graph generators. Lower is better.

Degeneration is indicated by a rise in the GCD values as the recurrences
increase.

5.2.1.4 Graphlet Correlation Distance

Recent work from systems biology has identified a new metric called the Graphlet

Correlation Distance (GCD). Simply put, the GCD computes the distance between

two graphlet correlation matrices – one matrix for each graph [122]. Because GCD is

a distance metric, lower values are better. The GCD can range from [0,+∞], where

the GCD is 0 if the two graphs are isomorphic.

Figure 5.5 shows the GCD of each recurrence level. Because GCD is a distance,

there is no blue line to compare against; instead, we can view degeneracy as an

increase in the GCD as the recurrences increase. Again, results from the Kronecker

model are absent for C. elegans. As expected, we see that almost all of the models

show degeneration on almost all graphs.

66

101 102 103

10−2

10−1

k

C
lu

st
er

in
g

C
o
effi

ci
en

t

Chung Lu

101 102 103

10−2

10−1

k

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

BTER

100 101 102 103

10−3

10−2

10−1

100

k

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Kronecker

101 102 103

10−2

10−1

k

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Transitive Chung Lu

101 102 103

10−2

10−1

k

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Chung Lu Binning

101 102 103

10−2

10−1

k

C
lu

st
er

in
g

C
oe

ffi
ci

en
t

Transitive Chung Lu Binning

H H ′2 H ′5 H ′8 H ′10

Figure 5.6. Clustering Coefficient. H is in blue. Results for recurrences H ′2,
H ′5, H

′
8 and H ′10 in lighter and lighter shades of red. Degeneration is
observed when recurrences increasingly deviate from H.

Kronecker’s GCD results show that in some cases the GCD is slightly reduced, but

in general its graphs deviate dramatically from the original. Chung-Lu and BTER

show signs of better network alignment when learning a model from C. elegans. This

result highlights biased assumptions in the Chung Lu and BTER models that seem

to favor networks of this kind while struggling to handle networks with power-law

degree distributions.

5.2.1.5 Clustering Coefficients

A node’s clustering coefficient is a measure of how well connected a vertex’s neigh-

bors are. Specifically, a nodes’s clustering coefficient, i.e., the local clustering coeffi-

cient, is the number of edges that exist in a node’s ego-network divided by the total

number of nodes possible in the ego-network. The global clustering coefficient is

67

100 101 102 103

100

101

102

103

k

A
ss

or
ta

ti
vi

ty

Chung-Lu

100 101 102 103
100

101

102

103

k

A
ss

or
ta

ti
vi

ty

BTER

100 101 102 103
10−4

10−2

100

102

k

A
ss

or
ta

ti
vi

ty

Kronecker

100 101 102 103

100

101

102

103

k

A
ss

or
ta

ti
vi

ty

Transitive Chung-Lu

100 101 102 103

100

101

102

103

k

A
ss

or
ta

ti
vi

ty

Chung-Lu Binning

100 101 102 103

100

101

102

103

k

A
ss

or
ta

ti
vi

ty

Transitive Chung-Lu Binning

H H ′2 H ′5 H ′8 H ′10

Figure 5.7. Assortativity. H is in blue. Results for recurrences H ′2, H
′
5, H

′
8

and H ′10 in lighter and lighter shades of red. Degeneration is observed when
recurrences increasingly deviate from H.

simply the average of all the local clustering coefficients.

The Chung Lu generator has been shown to model the degree distribution of

some input graph, and our results bare this out. Eigenvector centrality, hop plot

and graphlet correlation distances are also reasonably well modelled by the Chung

Lu generator. However, Pfeiffer et al. recently showed that the standard Chung

Lu generator does not well model a graph’s local clustering coefficients; so they

introduced the Transitive Chung Lu generator as an adaptation to the standard

model [95].

5.2.1.6 Assortativity.

The assortativity of a network is its tendency to have edges between nodes with

similar degree. For example, if high degree nodes primarily link to other high degree

68

nodes, and low degree nodes primarily link to low degree nodes, then the network’s

overall assortativity score will be high, and vice versa. The local assortativity for

each node is the amount, positive or negative, that the node contributes to the

overall global assortativity [91].

5.2.2 Robustness of Chung-Lu Extensions

Like in the case with the clustering coefficient, the standard Chung Lu model

was found to not accurately model the assortativity of real world graphs. Mussmann

et al. developed a Chung Lu with Binning adaptation that was shown to generate

graphs with appropriate assortativity [85]. Even better is that the transitive and

binning models can be combined to create a Transitive Chung Lu with Binning

generator that models the degree distribution, clustering coefficient and assortativity

of some input graph.

But the question remains, are these new generators robust?

We applied the infinity mirror test to the 6 graph generators, 3 original and

3 Chung Lu adaptations on the Routers dataset. All tests were performed on all

graphs for all generators, but cannot all be shown because of space limitations. Fig-

ure 5.6 shows the clustering coefficient results. We find that transitive Chung Lu

does nominally better than standard Chung Lu, but in all cases, the 5th, 8th and

10th recurrences seem to drift away (up and to the right) from original graph’s plots

demonstrating slight model degeneration as expressed through clustering coefficient.

The Kronecker generator did rather poorly in this test. The Kronecker generator

didn’t seem to have a degeneration pattern, but was simply inconsistent.

The assortativity results are shown in Figure 5.7. We do not see any noticeable

improvement in assortativity between the standard Chung Lu and the Chung Lu

with Binning generators. We again find that the 5th, 8th and 10th recurrences seem

to drift away (downward) from the original graph’s assortativity plots demonstrating

69

slight model degeneration as expressed through assortativity. The Kronecker graph

also performed poorly on this test, although it is unclear what the nature of the

degeneration is.

5.3 Infinity Mirror for HRG

For HRG this infinity mirror test means that we learn a set of production rules

from the original graph H and generate a new graph H∗; then we set H ← H∗

and repeat whereby learning a new model from the generated graph recursively. We

repeat this process ten times and compare the output of the 10th recurrence with the

original graph using GCD.

We expect to see that all models degenerate over ten recurrences. The question

is, how quickly do the models degenerate and how badly do the graphs become?

Figure 5.8 shows the GCD scores for the HRG, Chung-Lu and Kronecker models

at each recurrence (we have also validated the Infinity Mirror tests with other varia-

tions to the Chung-Lu model including the Block Two-Level Erdős-Rényi Model with

similar results [3]). Surprisingly, we find that HRG stays steady, and even improves

its performance while the Kronecker and Chung-Lu models steadily decrease their

performance as expected. We do not yet know why HRG improves performance in

some cases. Because GCD measures the graphlet correlations between two graphs,

the improvement in GCD may be because HRG is implicitly homing in on rules that

generate the necessary graph patterns.

5.3.1 Infinity Mirror Model Size

The number of production rules derived from a given graph using Fixed-Size

Graph Generation. Fig. 5.9 shows the number of nodes in graphs after 1, 5, and 10

feedback iterations. The trend for each input graph varies slightly, but in general the

model-size (i.e., the number of production rules derived) stays flat.

70

2 4 6 8 10

1.5

2

2.5

3

3.5

Recurrence

G
C

D

Routers

2 4 6 8 10

1

1.5

2

2.5

3

Recurrence

Enron

2 4 6 8 10

1.5

2

2.5

3

Recurrence

Arxiv

2 4 6 8 10

1

2

3

4

Recurrence

DBLP

HRG Chung-Lu Kronecker

Figure 5.8. Infinity Mirror: GCD comparison after each recurrence. Unlike
Kronecker and Chung-Lu models, HRG does not degenerate as its model is

applied repeatedly.

1 5 10
0

200

400

Recurrence

M
o
d

el
S

iz
e

P.Rules
K. Club
Proteins
Routers
ArXiv
Enron

Figure 5.9. Number of rules (mean over 20 runs) derived as the number of
recurrences increases.

5.4 Discussion

In the present work we introduced the infinity mirror test for graph generator

robustness. This test operates by recursively generating a graph and fitting a model

to the newly generated graph. A perfect graph generator would have no deviation

from the original or ideal graph, however the implicit biases and assumptions that are

cooked into the various models are exaggerated by the infinity mirror test allowing

for new insights that were not available before.

Although the infinity mirror test shows that certain graph models show degen-

71

eration of certain properties in certain circumstances, it is more important to gain

insight from how a model is degenerating in order to understand their failures and

make improvements. For example, the BTER results in Figs 5.2-5.4 shows via the

degree, eigenvector and hop plots that the BTER-generated graphs tend to become

more spread out, with fewer and fewer cross-graph links, which, in retrospect, seems

reasonable because of the siloed way in which BTER computes its model. Conversely,

Chung Lu tends to generate graphs with an increasingly well connected core (indi-

cated by the left-skewed hop plots and overestimated eigenvector centrality), but

that also have an increasingly large portion of the generated graph that is sparsely

connected (indicated by the odd shaped tail in the right-hand side of the eigenvector

centrality plots).

Most importantly, we find that the HRG model actually gets better as the num-

ber of recurrences increases. It is still unclear why this improvement is happening

contrary our intuition. The improvement in results may be evidence that the HRG

model is learning to hone in on rules that succinctly describe the reference graph.

A better understanding of how the model degenerates will shed light on the inher-

ent limitations. We hope that researchers and practitioners can consider using this

method in order to understand the biases in their models and therefore create more

robust graph generators in the future.

72

CHAPTER 6

TREE DECOMPOSITION

The goal of the HRG model is to derive a set of replacement rules that represent

the structure of some input graph. Applying these iteratively, we grow graphs with

characteristic properties similar to the input graph. Recall from prior chapters that

finding an optimal tree decomposition and corresponding minimal-width tree decom-

position is NP-Complete [7, 121]. Fortunately, many reasonable approximations exist

for general graphs. Prior chapters employed the commonly used maximum cardinal-

ity search (MCS) algorithm introduced by Tarjan and Yannikakis [112] in 1985. MCS

is a straightforward algorithm that creates a reasonable, but probably non-optimal,

tree decomposition. A surge in recent theoretical and application-oriented projects

has made a tremendous impact by finding bounded and near-optimal heuristics for

real-world graphs [1, 15, 18, 19]. Each tree decomposition algorithm has certain

heuristics and implementation decisions that are unavoidable; these decisions may

introduce bias, which may affect the shape of the tree decomposition. For example,

the MCS algorithm chooses an elimination ordering, i.e., the ordering of nodes in the

tree decomposition, based, in part, on the number of edges each node has.

This begs the question: How much does the choice of tree decomposition algorithm

affect the shape of the tree decomposition?

The goal of this task is to understand the relationship between a tree decomposi-

tion algorithm, the resulting tree, and the extracted HRG. Even though the resulting

tree decompositions may prove to be of different shapes, the extracted HRG may still

be stable because the node labels are not copied into the grammar. It is therefore

73

possible that different tree decompositions will still produce very similar HRGs.

The original implementation of the MCS algorithm yielded tree decompositions

with relatively low width. Recall that the treewidth is the size of the largest vertex

set in an optimal/minimal-width tree decomposition of a given graph. Vertex sets

are also characterized as cliques, thus the treewidth corresponds to the size of the

largest clique in a chordal completion of the graph.

The goal of computing fast, heuristic, and non-optimal tree decompositions is

finding a tree that has a width that is as close as possible to the treewidth. This is of

broad interested because finding an optimal (or close to optimal) tree decomposition

is used to solve problems in probabilistic inference, constraint satisfaction, and matrix

decomposition [44, 62, 62].

In this chapter we study 6 different tree decomposition heuristics and describe

their extracted HRGs. We also report the overlap of the intersection of the 6 indi-

vidual HRGs. We call this intersection of HRGs a “super-HRG,” and we report the

characteristics of the graphs that are grown with such a model.

The tree decomposition test methodology was conceived by myself with input from

Prof. Weninger. The evaluation, methodology and result plots were created by myself.

6.1 Background

A great deal of work has focused on applications of the algorithms that construct

a graph tree decomposition. The concept of tree decomposition is also known by

other other names depending on the specific branch of computer science and they

include clique-trees, cluster graphs, and junction trees.

Typically, tree decomposition construction is based on algorithms for decomposing

chordal graphs where a graph is deemed to be chordal if it has no induced cycles of

length great than tree. That is, every cycle in the graph has a chord. Within chordal

graphs, there always exists an ordering of vertices v1, . . . , vn such that for each vi its

74

neighbors Vj with j > i form a clique. This ordering is called a perfect elimination

ordering, and it creates an optimal tree decomposition of the chordal graph [1].

Because of this property of chordal graphs, finding a tree decomposition for a gen-

eral graph often begins with creating a chordal graph and then finding the associated

tree decomposition. Unfortunately, finding an optimal chordal graph (i.e., with the

fewest fill-edges) is called graph triangulation and is NP-Complete. Thus, finding the

optimal tree decomposition is also NP-Complete.

Existing algorithms for constructing tree decompositions range from those shown

to be practically intractable due to their complexity to those characterized as be-

ing computationally efficient but whose trees are far from optimal. Shoikhet and

Geiger developed a tractable algorithm, QuickTree, that can triangulate graphs in

a reasonable amount of time [105]. This algorithm saw usefulness in problems in

Bayesian inference and clique-tree inference algorithms. Gogate and Dechter devel-

oped QuickBB, a branch and bound algorithm for computing the tree decompositions

on undirected graphs [39]. Jones et al., describe very similar work where they ex-

tracted grammars using tree decomposition, but their work focuses on a class of tree

decomposition called edge-mapped tree decompositions [53]. This tree decomposition

is extended to use a topological sort that produces tree decompositions like those in

HRG. However, they evaluate the model in contrast to other forms of the tree decom-

position yielding linear trees, and they rely on a measure of perplexity to evaluate

the production rules. Their work does not generate graphs using the derived rules

and their approach is tested only on a series of graphs that have an average of 15

vertices.

Because of the intractability of exact/optimal algorithms, we resign to finding

good elimination orderings through heuristics in order to create good, but not nec-

essarily optimal, tree decompositions.

Many such elimination ordering heuristics exist. The first set of heuristics we

75

discuss are based on the graph triangulation. These are called lexicographic breadth

first search (LEXBFS) and maximum cardinality search (MCS), as well as variations

that find minimal triangulations on mcs (MCSM) and LEXBFS (LEXM). When

used on chordal graphs, these heuristics produce a perfect elimination ordering, so

it is thought that they would also produce near-optimal results on general graphs.

However, these heuristics are computationally expensive and struggle to run on very

large graphs, which is why the HRG extraction methods from the previous chapters

sampled subgraphs from the input networks.

Alternatively, there exist many greedy heuristics that choose an elimination or-

dering in a greedy manner. There are many varieties of greedy elimination ordering

algorithms. Two basic varieties chose an elimination ordering based on minimizing

fill (i.e., how many new edges would be added to a graph if a particular vertex is

chosen next) or minimizing degree (i.e., how many neighbors does the vertex have).

We call these greedy measures min-fill (MINF) and min-degree (MIND) respectively.

These greedy orderings are less computationally expensive than LEXM and MCS

and there are ongoing efforts to further reduce their cost. For example, a multiple

mindegree (MMD) algorithm has been proposed that eliminates multiple vertices in

the same step [1].

6.2 Comparing Tree Decompositions

The question of interest is how does our choice of tree decomposition bias the

productions rules derived from the input graph? To address this question we derive

HRGs using various tree decompositions algorithms and compare the results.

A battery of elimination ordering heuristics are compared. These heuristics

include maximum cardinality search (MCS), and its minimal triangulation varia-

tion (MCSM) [11], lexicographic search with minimal triangulation (LEXM) [101],

minimum fill-in (MINF), minimum degree (MIND), and Multiple Minimum De-

76

TABLE 6.1

SUMMARY: ELIMINATION ORDERING ALGORITHMS.

VE Heuristic Description

MCS Maximum cardinality search is a simple heuristic that works
well on chordal graphs.

MCSM Minimum triangulation extension to MCS.

MIND Minimum degree is a well known general-purpose ordering
scheme and is widely used in sparse matrix computation.

MINF Minimum fill consists of greedy node elimination with the fewest
edges are added breaking ties arbitrarily.

LEXM Derived from lexicographic breadth-first search for minimal tri-
angulation.

MMD Multiple minimum degree variation to MIND

gree (MMD) [78]. For a more complete description see the survey by Kemazi and

Poole [56]. Also note that these heuristics do not represent the complete list of

available algorithms [12, 94]. We used the INDDGO implementation of these algo-

rithms [1].

We examine and evaluate tree decompositions from the heuristics in Table 6.1.

We select a diverse set of real world networks. Table 6.2 shows some of the properties

of these graphs.

6.2.1 Datasets

A number of empirical networks are used to evaluate the different heuristics.

These networks vary in the number of nodes and edges. We consider small and

large networks, but more importantly we want a wide range and diverse set of graph

77

grammars (graph fragments) to understand how the tree decomposition contributes

to the HRG model. These networks are also characterized by other properties that

we hope HRG is able to model accurately.

• Small Network Datasets. The PDZBase graph is a network of protein–protein
interactions from PDZBase. The UCForum graph is a bipartite network of stu-
dents at UC Irvine and an Online message board. The LesMis graph draws an
edge between characters in the theatrical play Les Miserables if they appear
in a scene together. The Conference graph describes face-to-face conversations
during the Hypertext conference. The Jazz network is a network of jazz musi-
cians where an edge is drawn if two musicians collaborated. The Email network
is a graph of email communication between members of a large research institu-
tion in Europe. The Phone network is a network of phone calls made between
students at a university. The Infectious network is like the Conference network
in that it draws an edge between people if they interacted at a conference on
infection diseases. These networks are publicly available from KONECT [68]
or SNAP[71].

• Large Network Datasets. The EuroRoad network is an infrastructure net-
work of Europe’s roads where nodes are cities and edges represent the road that
connects them. The CollegeMsg network is from private messages between col-
lege students using an online social network at the University of California,
Irvine.

Table 6.2 illustrates the size of the graphs used in the experimental section.

Along with the treewidth (i.e., the width of the optimal tree decomposition)

we computed the width of each tree as constructed by the six tree decomposition

algorithms. The results are illustrated in Tab. 6.3. The EuroRoad and CollegeMsg

networks did not finish in a reasonable time, so we report the mean-average treewidth

of 20 samples of 300-node subgraphs. We find that each elimination ordering performs

reasonably close to optimal when the treewidth is small, but far worse when the

treewith is large.

78

TABLE 6.2

REAL NETWORKS

Datasets nodes (n) edges (m) Avg. degree (k̄)

PDZBase 212 244 2.3

LesMis 77 254 6.60

Conference 113 2196 38.87

Jazz 198 2742 27.70

Phone 274 2124 15.50

Email 309 1938 12.54

Infectious 410 2765 13.49

UCForum 2320 7,089 47.46

EuroRoad 1174 1417 2.41

CollegeMsg 1899 13838 14.57

6.3 Methodology

Here we evaluate the affect the choice of elimination ordering heuristic has on the

construction of new graphs. For each elimination ordering we generated 20 graphs and

compared their distance to the original graph with GCD. Figure 6.4 shows that the

choice between MCS and MINF, for example, results in little practical difference in

the GCD score. The best performing elimination ordering heursitic was inconsistent

across the different data sets.

In addition to the GCD results, Fig. 6.1 shows the results of various elimination

orderings across various various graphs on different graph properties. As in the GCD

results, these results show mixed results for various graph properties.

79

TABLE 6.3

WIDTH AS A FUNCTION OF ELIMINATION ORDERING

Width

Dataset tw MCS LEXM MCSM MIND MINF MMD

PDZBase 6 9 12 13 6 6 6

LesMis 9 11 9 11 9 9 9

Conference 76 80 89 89 76 76 76

Jazz 59 88 77 81 104 59 73

Phone 40 42 43 43 50 40 40

Email 34 41 46 45 35 34 35

Infectious 39 65 56 128 42 40 49

UCForum 126 326 361 341 282 276 279

EuroRoad 6.6* 42 30 48 19 16 16

CollegeMsg 87.6* 459 602 543 404 394 403

6.3.1 Variance in Tree Decomposition

These results show that the choice of elimination ordering heuristic has little effect

on the fidelity of the generated graph. Our next question asks: what is the overlap

of the rules within the various HRGs produced by the various elimination orderings.

To answer this question we find the intersection of each HRG. Specifically, we say

that a production rule from, say, HRGmcs intersects with a production rules from,

say, HRGmind if the nonterminal hyperedges on both LHSs have the same arity, and

if the graphlets on the RHSs are isomorphic.

We compute the Jaccard similarity to assess the ratio of isomorphic rules for each

elimination ordering heuristic. The results of this test are illustrated in Tab. 6.5. This

80

TABLE 6.4

GCD USING AN ARRAY OF ELIMINATION ORDERING HEURISTICS

Dataset MCS LEXM MIND MCSM MINF MMD

PDZBase 1.8 (1.3) 2.2 (1.5) 4.0 (.40) 3.2 (1.3) 3.8 (0.7) 2.7 (0.27)

LesMis 1.46 (0.16) 1.6 (0.16) 1.7 (0.2) 1.8 (0.13) 1.4 (0.15) 1.774 (0.280)

Conference 0.707 (0.137) 0.582 (0.112) 0.606 (0.143) 0.576 (0.137) 0.661 (0.154) 0.653 (0.177)

Jazz 1.2 (0.1) 0.98 (0.03) 1.2 (1.6) 0.75 (0.04) 1.11 (0.09) 0.977 (0.083)

Email 3.0456 (0.118) 2.554 (0.100) 2.552 (0.248) 2.491 (0.151) 2.862 (0.269) 2.679 (0.267)

Infectious 0.760 (0.060) 0.889 (0.083) 0.824 (0.060) 0.684 (0.060) 0.857 (0.0613) 0.763 (0.085)

UCForum 0.985 (0.093) 1.030 (0.098) 1.198 (0.093) 0.948 (0.113) 1.242 (0.107) 1.002 (0.106)

EuroRoad 1.633 (1.059) 2.300 (1.237) 2.820 (1.231) 2.728 (1.239) 3.003 (1.186) 3.224 (1.102)

CollegeMsg 3.276 (0.275) 0.835 (0.036) 0.605 (0.047) 0.773 (0.059) 0.773 (0.059)

result implies that certain elimination ordering heuristics share an affinity, but we

are uncertain what the exact nature of these results represent. Overall, we find that

there is little overlap in the production rules extracted from various HRG models.

6.4 Discussion

Previous results show that the HRG model preserves many of the input graph’s

network properties. In this chapter we investigated the how the choice of tree decom-

position affects the extracted model. We examined a battery of tree decomposition

algorithms to examine the production rules and find an answer to this question. Our

initial results highlight two important findings: elimination ordering heuristics pro-

duce mostly non-overlapping production rules, but the generated trees were largely

immune to the differences in HRG models.

We intended to exploit this overlap in HRG models to test if a global intersection

of isomorphic graph-fragments from all elimination ordering heuristics results in a

robust, reduced set of production rules that generates graphs. This rule-intersection

approach would lets us hone in on derived rules because the graph-fragments produced

81

TABLE 6.5

PRODUCTION RULES OVERLAP: EMAIL-EU DATASET

MCS MIND MCSM LEXM MMD MINF

mcs - 0.182 0.182 0.161 0.194 0.186

mind - 0.207 0.159 0.220 0.209

mcsm - 0.180 0.201 0.191

lexm - 0.157 0.155

mmd - 0.184

minf -

by different tree decomposition algorithms might indicate a stable set of meaningful

production rules, rather than arbitrary rules extracted from a heuristically generated

tree decomposition.

Unfortunately, the rule-intersection HRGs sometimes did not generate any graphs

at all because the rule-intersection was so sparse so that there were no LHSs to match

nonterminals during graph generation. Furthermore, finding graphlet intersections

was a tedious and computationally expensive process.

82

1 10

1

10

k (node degree)

fr
eq

u
en

cy

Les Mis

100 101

100

101

102

k (node degree)
fr

eq
u

en
cy

PDZBASE

100 101 102

100

101

102

k (node degree)

fr
eq

u
en

cy

CONTACT

100 101

100

101

102

k (node degree)

fr
eq

u
en

cy

EMAIL EU

(a) Degree distribution.

100.5 101 101.5
10−1

100

LES MIS

101 102

10−1

100

CONTACT

100.4 100.6 100.8 101 101.2 101.4
10−3

10−2

PDZBASE

100.5 101 101.5

10−3

10−2

10−1

100

EMAIL EU

(b) Clustering Coefficients

0 20 40 60 80

10−3

10−2

10−1

Node

LES MIS

0 50 100 150 200 250 300

10−3

10−2

10−1

Node

CONTACT

0 50 100 150
10−21

10−16

10−11

10−6

10−1

Node

PDZBASE

0 50 100 150 200 250 300
10−21

10−16

10−11

10−6

10−1

Node

EMAIL EU

(c) Eigenvector Centrality

0 1 2 3 4 5 6

0

10

20

30

40

Hops

R
ea

ch
ab

le
P

ai
rs

LESMIS

0 5 10 15

0

10

20

30

Hops

R
ea

ch
ab

le
P

ai
rs

PDZBASE

0 1 2 3 4 5

0

50

100

Hops

R
ea

ch
ab

le
P

ai
rs

CONTACT

0 2 4 6 8

0

20

40

60

80

Hops

R
ea

ch
ab

le
P

ai
rs

EMAIL EU

(d) Hop Plot.

H lexm mcs mcsm mind minf mmd

Figure 6.1. Results of generating graphs from various elimination orderings

83

CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

Here we have explored and evaluated principled techniques that learn the LEGO-

like building blocks of real-world networks. We did so by exploiting techniques at

the overlap where graph theory meets formal language theory. Building on these

ideas, pioneered by my collaborators Tim Weninger and David Chiang, we examined

graph decomposition, grammar extraction, model inference, and analysis of network

patterns.

We focused on advancing HRG, a graph rewriting formalism, to extract graph

grammars from any class of connected graphs. This model was able to learn the

building blocks of networks and leveraged the generating power of HRGs to construct

graphs that exhibit, or maintain, the network properties of interest found in the

reference graph. The specific themes covered include model inference and stochastic

graph generation, HRG fixed-size graph generation, measures of model resilience,

and model bias resulting from the use of different tree decomposition algorithms. We

expanded on these themes below in more detail.

• Constructing Graphs with HRGs. First we provide a description of how to
derive an HRG by transforming the reference graph into a tree decomposition,
deriving the graph grammar from the tree decomposition. We made further
improvements to the HRG model so to create a fixed size algorithm, where the
size, in terms of the number of edges or nodes) could be specified.

• Evaluating HRGs Next we evaluated the ability of the HRG model to gen-
erate graphs that are similar to the reference graph. In Chapter 4 we show
that an application of the HRG rules creates new graphs that have very similar
properties to the original graph. The results from standard network measures,

84

graphlet counts, and graphlet correlation distance metrics show a stark im-
provement in performance over several existing graph generators.

• Infinity mirror tests for robustness. A new metric of model robustness
called the Infinity Mirror test examined model degeneration in Chapter 5. This
procedure repeatedly learned a graph model from the output of a previously
generated graph. We found that after a few recurrences most of the existing
graph models degenerated, and some models quickly lost their ability to create
cogent graphs. The HRG model, on the other hand, actually got better as the
number of recurrences increased.

• Tree decomposition bias. We explored core tree decomposition step of the
HRG model. Specifically, how the choice of elimination ordering during tree de-
composition affected the construction and composition of the HRGs. Chapter 6
examined six different elimination orderings and found that they were equally
able to generate good graphs, despite the observation that their rule set did not
overlap.

7.1 Collaborations

7.1.1 HRG Extension to Temporal Graphs

A critical challenge in many applications is related to the constant changing nature

of the data, for instance the dynamic properties that are observed along a temporal

dimension. Consider for example the behavior of a friendship network. Depending

on how a network of friends is defined, new friends may join the network over time.

If we define the network more by the function of the ties (the interactions between

friends) we can have at any one time only certain friends active and others dormant in

their interactions with other members of the group. A graphical abstraction for this

system is characterized by the ties that appear (active) and by those that disappear.

Consider another scenario that looks at the travelers at an airport. Modeling

the incoming and outgoing flights of the passengers is best done by considering the

temporal dynamics. Alternatively, we can potentially model the dynamics of how

passengers move about a fixed space. The latter is concerned with a spatial com-

ponent of the data, but still tightly coupled to the temporal dimension. How can

85

we incorporate the temporal properties of the nodes and edges into a model? This

requires extending the HRG model to examine the time-stamps of edges. This idea

was explored and the results presented at the Mining and Learning with Graphs

Workshop [93]. Although not fully explored in this thesis, this illuminates another

avenue for studying the application of HRG graph model.

7.1.2 Latent Variable Probabilistic Graph Grammars

This work address one of the limitations of the HRG model. The HRG model

encodes only sufficient information to ensure that the result is properly formed. To

do this, the tree decomposition step transforms the input graph into tree. The rules

we extract come from the top, middle and bottom of the tree graph, however, may

play different roles in the construction of the graph. The central question here is how

do we provide context to the rules that is less aligned on their frequency and more

on where in the tree they come from. This context could influence when the rules

should fire when generating a new graph. My collaborator Xinyi Wang proposed a

mechanism that corrects for the problem described above. We model an HRG-rule’s

context via latent variables and show that this approach can build better synthetic

graphs. This work again illuminates avenue for additional research.

7.2 Vision and Future Work

By developing algorithms for graph generation models, we elucidate underlying

mechanisms contributing to network composition. Understanding local patterns of

large networks can lead to high impact applications, novel mathematical abstractions,

and to the development of sorely needed tools for the advancement of field today. The

concepts explored here naturally opens up new ground for further exploration.

86

7.2.1 Analytic Methods for the Network Properties of HRG Graphs

Analytically exploring the properties of HRG graphs is difficult, but important.

Showing that HRG model yields graphs with properties that are analytically tractable

might yield surprising results. Network properties such as degree distribution, diam-

eter, and other spectral properties of the graphs should be explored further to de-

termine if the grammar patterns model generated structures exhibit a certain degree

distribution or any particular eigenvector distribution as is the case with Kronecker

graphs. For example, in grammars obtained from connected graphs, can we analyti-

cally show that connected (or disconnected) graphs are possible?

7.2.2 Applications to Deep Learning

Exploiting the richness of the grammars for use in machine learning offers practical

applications of the HRG model. One possible research path is in designing recurrent

neural network controllers that optimize the selection of rules that generate neural

network architectures. We could then evaluate the architecture on deep learning

task. If it performs well, then we feed back the production rules to the recurrent

neural network controller. This approach could help contribute to better-engineered

high-performing neural network architectures over time [88, 107, 123].

7.2.3 Applications to Graph Engines

Our HRG model offers two potential applications in pyramid graph algorithms.

First, to explore using hyperedge replacement for layer-to-layer contraction. Second,

to investigate extracting rules set for selecting contraction algorithms according to

the graph class in question. In combinatorial optimization tasks, approximation al-

gorithms offer solutions to otherwise NP-hard or NP-Complete problems, if applied

to a decision problem. A pyramid algorithm would be one example. In human and

computer vision literature, these algorithms are well utilized, but only more recently

87

have been applied to problem-solving tasks. Multi-resolution graph pyramids, where

the bottom of the pyramid contains the entire graph and successive layers have com-

pressed (or contracted) graph information reduces the size of the input as we climb

up the pyramid and reach a point where a combinatorial solution to the problem is

feasible [13, 45, 84, 97]. How graphs contract from one pyramid level to the next

depends on the class to which the network belongs.

88

BIBLIOGRAPHY

1. A. B. Adcock, B. D. Sullivan, and M. W. Mahoney. Tree decompositions and
social graphs. Internet Mathematics, 12(5):315–361, 2016.

2. S. Aguinaga and T. Weninger. The infinity mirror test for analyzing the robust-
ness of graph generators. In ACM SIGKDD Workshop on Mining and Learning
with Graphs, MLG ’16, New York, NY, USA, 2016. ACM.

3. S. Aguinaga and T. Weninger. The infinity mirror test for analyzing the ro-
bustness of graph generators. In KDD Workshop on Mining and Learning with
Graphs. ACM, 2016.

4. S. Aguinaga, R. Palacios, D. Chiang, and T. Weninger. Growing graphs from
hyperedge replacement grammars. In CIKM. ACM, 2016.

5. N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield. Efficient graphlet count-
ing for large networks. In Data Mining (ICDM), 2015 IEEE International Con-
ference on, pages 1–10. IEEE, 2015.

6. R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Re-
views of modern physics, 74(1):47, 2002.

7. S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embed-
dings in ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284,
1987.

8. A.-L. Barabási and R. Albert. Emergence of scaling in random networks. sci-
ence, 286(5439):509–512, 1999.

9. A.-L. Barabasi, D. J. Watts, and M. Newman. Princeton Studies in Complexity
: Structure and Dynamics of Networks. Princeton University Press, Princeton,
NJ, USA, 201110 2011. ISBN 9781400841356. ID: 10578571.

10. M. Barthelemy. Betweenness centrality in large complex networks. The Euro-
pean Physical Journal B-Condensed Matter and Complex Systems, 38(2):163–
168, 2004.

11. A. Berry, J. R. Blair, P. Heggernes, and B. W. Peyton. Maximum cardinality
search for computing minimal triangulations of graphs. Algorithmica, 39(4):
287–298, 2004.

89

12. A. Berry, R. Pogorelcnik, and G. Simonet. Organizing the atoms of the clique
separator decomposition into an atom tree. Discrete Applied Mathematics, 177:
1–13, 2014.

13. M. Bister, J. Cornelis, and A. Rosenfeld. A critical view of pyramid segmentation
algorithms. Pattern Recognition Letters, 11(9):605–617, 1990.

14. H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on computing, 25(6):1305–1317, 1996.

15. H. L. Bodlaender and A. M. Koster. Treewidth computations i. upper bounds.
Information and Computation, 208(3):259–275, 2010.

16. E. Bullmore and O. Sporns. Complex brain networks: graph theoretical analysis
of structural and functional systems. Nature Reviews Neuroscience, 10(3):186–
198, 2009.

17. D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A recursive model for graph
mining. In SDM, volume 4, pages 442–446. SIAM, 2004.

18. F. Chang, C.-Y. Guo, X.-R. Lin, and C.-J. Lu. Tree decomposition for large-
scale svm problems. Journal of Machine Learning Research, 11(Oct):2935–2972,
2010.

19. C. Chekuri and J. Chuzhoy. Large-treewidth graph decompositions and appli-
cations. In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 291–300. ACM, 2013.

20. D. Chiang, J. Andreas, D. Bauer, K. M. Hermann, B. Jones, and K. Knight.
Parsing graphs with hyperedge replacement grammars. In ACL (1), pages 924–
932, 2013.

21. F. Chung and L. Lu. Connected components in random graphs with given
expected degree sequences. Annals of combinatorics, 6(2):125–145, 2002.

22. F. Chung and L. Lu. The average distances in random graphs with given ex-
pected degrees. Proceedings of the National Academy of Sciences, 99(25):15879–
15882, 2002.

23. F. Chung and L. Lu. Connected components in random graphs with given
expected degree sequences. Annals of combinatorics, 6(2):125–145, 2002.

24. D. J. Cook and L. B. Holder. Substructure discovery using minimum de-
scription length and background knowledge. Journal of Artificial Intelli-
gence Research, pages 231–255, 1994. URL http://www.jair.org/media/43/

live-43-1384-jair.pdf.

25. W. F. Doolittle and E. Bapteste. Pattern pluralism and the tree of life hy-
pothesis. Proceedings of the National Academy of Sciences, 104(7):2043–2049,
2007.

90

http://www.jair.org/media/43/live-43-1384-jair.pdf
http://www.jair.org/media/43/live-43-1384-jair.pdf

26. F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement, graph gram-
mars. Handbook of Graph Grammars, 1:95–162, 1997.

27. F. Drewes, B. Hoffmann, and D. Plump. Hierarchical graph transformation.
Journal of Computer and System Sciences, 64(2):249–283, 2002.

28. D. Easley and J. Kleinberg. Networks, crowds, and markets: Reasoning about
a highly connected world. Cambridge University Press, 2010.

29. P. Erdos and A. Rényi. On the evolution of random graphs. Publ. Math. Inst.
Hungar. Acad. Sci, 5:17–61, 1960.

30. P. Erdos and A. Rényi. On the evolution of random graphs. Bull. Inst. Internat.
Statist, 38(4):343–347, 1961.

31. L. Euler. Solutio problematis ad geometriam situs pertinentis. C. Petr., 8:128,
1736(1741).

32. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of
the internet topology. In ACM SIGCOMM computer communication review,
volume 29, pages 251–262. ACM, 1999.

33. L. C. Freeman. Centrality in social networks conceptual clarification. Social
networks, 1(3):215–239, 1978.

34. L. C. Freeman. The development of social network analysis-with an emphasis
on recent events. The sage handbook of social network analysis, 21(3):26–39,
2011.

35. P. Fronczak, A. Fronczak, and M. Bujok. Exponential random graph mod-
els for networks with community structure. Phys. Rev. E, 88:032810, Sept.
2013. doi: 10.1103/PhysRevE.88.032810. URL http://link.aps.org/doi/

10.1103/PhysRevE.88.032810.

36. S. Geman and M. Johnson. Dynamic programming for parsing and estimation
of stochastic unification-based grammars. In ACL, pages 279–286. Association
for Computational Linguistics, 2002.

37. E. N. Gilbert. Random graphs. Ann. Math. Statist., 30(4):1141–1144, 12
1959. doi: 10.1214/aoms/1177706098. URL http://dx.doi.org/10.1214/

aoms/1177706098.

38. M. Girvan and M. E. Newman. Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99(12):7821–7826,
2002.

39. V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In
Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages
201–208. AUAI Press, 2004.

91

http://link.aps.org/doi/10.1103/PhysRevE.88.032810
http://link.aps.org/doi/10.1103/PhysRevE.88.032810
http://dx.doi.org/10.1214/aoms/1177706098
http://dx.doi.org/10.1214/aoms/1177706098

40. A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M. Airoldi. A survey of
statistical network models. Foundations and Trends R© in Machine Learning, 2
(2):129–233, 2010.

41. S. M. Goodreau, J. A. Kitts, and M. Morris. Birds of a feather, or friend of a
friend? using exponential random graph models to investigate adolescent social
networks. Demography, 46(1):103–125, 2009.

42. G. Grahne and J. Zhu. Fast algorithms for frequent itemset mining using fp-
trees. TKDE, 17(10):1347–1362, 2005.

43. M. S. Granovetter. The strength of weak ties. American journal of sociology,
pages 1360–1380, 1973.

44. H. Guo and W. Hsu. A survey of algorithms for real-time bayesian network in-
ference. In AAAI/KDD/UAI02 Joint Workshop on Real-Time Decision Support
and Diagnosis Systems. Edmonton, Canada, 2002.

45. Y. Haxhimusa, W. G. Kropatsch, Z. Pizlo, A. Ion, and A. Lehrbaum. Ap-
proximating tsp solution by mst based graph pyramid. GbRPR, 4538:295–306,
2007.

46. H. S. Heaps. Information retrieval: Computational and theoretical aspects. Aca-
demic Press, Inc., 1978.

47. L. B. Holder, D. J. Cook, S. Djoko, et al. Substucture discovery in the subdue
system. In KDD workshop, pages 169–180, 1994.

48. P. W. Holland and S. Leinhardt. An exponential family of probability distri-
butions for directed graphs. Journal of the american Statistical association, 76
(373):33–50, 1981.

49. D. R. Hunter, M. S. Handcock, C. T. Butts, S. M. Goodreau, and M. Mor-
ris. ergm: A package to fit, simulate and diagnose exponential-family
models for networks. J Stat Softw, 24(3):nihpa54860–nihpa54860, May
2008. ISSN 1548-7660. URL http://www.ncbi.nlm.nih.gov/pmc/articles/

PMC2743438/. 19756229[pmid].

50. D. R. Hunter, M. S. Handcock, C. T. Butts, S. M. Goodreau, and M. Morris.
ergm: A package to fit, simulate and diagnose exponential-family models for
networks. Journal of statistical software, 24(3):nihpa54860, 2008.

51. T. A. Jarrell, Y. Wang, A. E. Bloniarz, C. A. Brittin, M. Xu, J. N. Thom-
son, D. G. Albertson, D. H. Hall, and S. W. Emmons. The connectome of a
decision-making neural network. Science, 337(6093):437–444, 2012. ISSN 0036-
8075. doi: 10.1126/science.1221762. URL http://science.sciencemag.org/

content/337/6093/437.

92

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743438/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743438/
http://science.sciencemag.org/content/337/6093/437
http://science.sciencemag.org/content/337/6093/437

52. C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining algo-
rithms. The Knowledge Engineering Review, 28(01):75–105, 2013.

53. B. K. Jones, S. Goldwater, and M. Johnson. Modeling graph languages with
grammars extracted via tree decompositions. In Proceedings of the 11th Inter-
national Conference on Finite State Methods and Natural Language Processing,
pages 54–62, 2013.

54. I. Jonyer. Graph grammar learning. Mining Graph Data, pages 183–201, 2006.

55. S. A. Kauffman. The origins of order: Self organization and selection in evolu-
tion. Oxford University Press, USA, 1993.

56. S. M. Kazemi and D. Poole. Elimination ordering in lifted first-order proba-
bilistic inference. In AAAI, pages 863–870, 2014.

57. C. Kemp and J. B. Tenenbaum. The discovery of structural form. PNAS,
105(31):10687–10692, 2008. doi: 10.1073/pnas.0802631105. URL http://www.

pnas.org/content/105/31/10687.abstract.

58. C. Kemp and J. B. Tenenbaum. The discovery of structural form. Proceedings
of the National Academy of Sciences, 105(31):10687–10692, 2008.

59. B. Klimt and Y. Yang. Introducing the enron corpus. In CEAS, 2004.

60. T. G. Kolda, A. Pinar, T. Plantenga, and C. Seshadhri. A scalable generative
graph model with community structure. SIAM Journal on Scientific Computing,
36(5):C424–C452, 2014.

61. D. Koller and N. Friedman. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

62. A. M. Koster, S. P. van Hoesel, and A. W. Kolen. Solving partial constraint
satisfaction problems with tree decomposition. Networks, 40(3):170–180, 2002.

63. T. S. Kuhn. The structure of scientific revolutions. University of Chicago press,
2012.

64. J. Kukluk, L. Holder, and D. Cook. Inferring graph grammars by detecting
overlap in frequent subgraphs. International Journal of Applied Mathematics
and Computer Science, 18(2):241–250, 2008.

65. J. P. Kukluk, L. B. Holder, and D. J. Cook. Inference of node replacement
recursive graph grammars. In SDM, pages 544–548. SIAM, 2006.

66. J. P. Kukluk, C. H. You, L. B. Holder, and D. J. Cook. Learning node replace-
ment graph grammars in metabolic pathways. In BIOCOMP, pages 44–50,
2007.

93

http://www.pnas.org/content/105/31/10687.abstract
http://www.pnas.org/content/105/31/10687.abstract

67. J. P. Kukluk, L. B. Holder, and D. J. Cook. Inference of edge replacement
graph grammars. International Journal on Artificial Intelligence Tools, 17(03):
539–554, 2008.

68. J. Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd
International Conference on World Wide Web, pages 1343–1350. ACM, 2013.

69. C. Lautemann. Decomposition trees: structured graph representation and effi-
cient algorithms. In CAAP’88, pages 28–39. Springer, 1988.

70. J. Leskovec and C. Faloutsos. Sampling from large graphs. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 631–636. ACM, 2006.

71. J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014 (Retrieved:
11/Nov/2017).

72. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification
laws, shrinking diameters and possible explanations. In SIGKDD, pages 177–
187. ACM, 2005.

73. J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and
shrinking diameters. ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(1):2, 2007.

74. J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical proper-
ties of community structure in large social and information networks. In WWW,
pages 695–704. ACM, 2008.

75. J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani.
Kronecker graphs: An approach to modeling networks. Journal of Machine
Learning Research, 11(Feb):985–1042, 2010.

76. B. Li, F. Z. Moataz, N. Nisse, and K. Suchan. Minimum size tree-
decompositions. Electronic Notes in Discrete Mathematics, 50:21–27, 2015.

77. W. Lin, X. Xiao, and G. Ghinita. Large-scale frequent subgraph mining in
mapreduce. In ICDE, pages 844–855. IEEE, 2014.

78. J. W. Liu. Modification of the minimum-degree algorithm by multiple elimi-
nation. ACM Transactions on Mathematical Software (TOMS), 11(2):141–153,
1985.

79. M. H. Luerssen. Graph grammar encoding and evolution of automata net-
works. In Proceedings of the Twenty-eighth Australasian conference on Com-
puter Science-Volume 38, pages 229–238. Australian Computer Society, Inc.,
2005.

94

http://snap.stanford.edu/data

80. D. Marcus and Y. Shavitt. Efficient counting of network motifs. In 2010 IEEE
30th International Conference on Distributed Computing Systems Workshops,
pages 92–98, June 2010. doi: 10.1109/ICDCSW.2010.41.

81. D. Marcus and Y. Shavitt. Rage–a rapid graphlet enumerator for large networks.
Computer Networks, 56(2):810–819, 2012.

82. O. J. Mengshoel. Understanding the scalability of bayesian network inference
using clique tree growth curves. Artificial Intelligence, 174(12):984–1006, 2010.

83. J. L. Moreno. Who shall survive?: A new approach to the problem of human
interrelations. Nervous and Mental Disease Publishing Co, 1934.

84. S. F. Mousavi, M. Safayani, and A. Mirzaei. Graph pyramid embedding in
vector space. In Computer and Knowledge Engineering (ICCKE), 2014 4th
International eConference on, pages 146–151. IEEE, 2014.

85. S. Mussmann, J. Moore, J. J. Pfeiffer, and J. Neville III. Assortativity in chung
lu random graph models. In Proceedings of the 8th Workshop on Social Network
Mining and Analysis, page 3. ACM, 2014.

86. S. Mussmann, J. Moore, J. J. Pfeiffer III, and J. Neville. Incorporating assor-
tativity and degree dependence into scalable network models. In AAAI, pages
238–246, 2015.

87. M.-J. Nederhof and G. Satta. Probabilistic parsing as intersection. In Proc.
International Workshop on Parsing Technologies, 2003.

88. R. Negrinho and G. Gordon. Deeparchitect: Automatically designing and train-
ing deep architectures. arXiv preprint arXiv:1704.08792, 2017.

89. M. Newman. Networks: An Introduction. Oxford University Press, Inc., New
York, NY, USA, 2010. ISBN 0199206651, 9780199206650.

90. M. Newman. Networks: An Introduction. Oxford University Press, Inc., 2010.

91. M. E. Newman. Mixing patterns in networks. Physical Review E, 67(2):026126,
2003.

92. S. Nijssen and J. N. Kok. The gaston tool for frequent subgraph mining. Elec-
tronic Notes in Theoretical Computer Science, 127(1):77–87, 2005.

93. C. Pennycu, S. Aguinaga, and T. Weninger. A temporal tree decomposition
for generating temporal graphs. KDD Workshop on Mining and Learning with
Graphs, 2011.

94. N. Peyrard, S. De Givry, A. Franc, S. Robin, R. Sabbadin, T. Schiex, and
M. Vignes. Exact and approximate inference in graphical models: variable
elimination and beyond. arXiv preprint arXiv:1506.08544, 2015.

95

95. J. J. Pfeiffer, T. La Fond, S. Moreno, and J. Neville. Fast generation of large
scale social networks while incorporating transitive closures. In Privacy, Secu-
rity, Risk and Trust (PASSAT), 2012 International Conference on and 2012 In-
ternational Confernece on Social Computing (SocialCom), pages 154–165. IEEE,
2012.

96. A. Pinar, C. Seshadhri, and T. G. Kolda. The similarity between stochastic
kronecker and chung-lu graph models. SDM, 2011.

97. Z. Pizlo and Z. Li. Pyramid algorithms as models of human cognition. In Elec-
tronic Imaging 2003, pages 1–12. International Society for Optics and Photonics,
2003.

98. N. Pržulj. Biological network comparison using graphlet degree distribution.
Bioinformatics, 23(2):e177–e183, 2007.

99. N. Robertson and P. D. Seymour. Graph minors. ii. algorithmic aspects of
tree-width. Journal of algorithms, 7(3):309–322, 1986.

100. G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An introduction to expo-
nential random graph (p*) models for social networks. Social networks, 29(2):
173–191, 2007.

101. D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM Journal on computing, 5(2):266–283, 1976.

102. E. Schmidt and J. Cohen. The new digital age: Transforming nations, busi-
nesses, and our lives. Vintage, 2014.

103. R. Sedgewick and P. Flajolet. Introduction to the Analysis of Algorithms.
Addison-Wesley Professional, 2nd edition, 2013. URL http://aofa.cs.

princeton.edu.

104. C. Seshadhri, T. G. Kolda, and A. Pinar. Community structure and scale-free
collections of Erdős-Rényi graphs. Physical Review E, 85(5):056109, 2012.

105. K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangu-
lations. In AAAI/IAAI, pages 185–190, 1997.

106. S. L. Simpson, S. Hayasaka, and P. J. Laurienti. Exponential random graph
modeling for complex brain networks. PLoS ONE, 6(5):e20039, 05 2011. doi: 10.
1371/journal.pone.0020039. URL http://dx.doi.org/10.1371%2Fjournal.

pone.0020039.

107. A. Sinha, M. Sarkar, A. Mukherjee, and B. Krishnamurthy. Introspection: Ac-
celerating neural network training by learning weight evolution. arXiv preprint
arXiv:1704.04959, 2017.

96

http://aofa.cs.princeton.edu
http://aofa.cs.princeton.edu
http://dx.doi.org/10.1371%2Fjournal.pone.0020039
http://dx.doi.org/10.1371%2Fjournal.pone.0020039

108. A. Stolcke. An efficient probabilistic context-free parsing algorithm that com-
putes prefix probabilities. Computational linguistics, 21(2):165–201, 1995.

109. S. H. Strogatz. Exploring complex networks. Nature, 410(6825):268–276, 2001.

110. Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient subgraph matching on
billion node graphs. PVLDB, 5(9):788–799, 2012.

111. R. E. Tarjan and M. Yannakakis. Addendum: Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM Journal on Computing, 14(1):254–255, 1985. doi:
10.1137/0214020. URL http://dx.doi.org/10.1137/0214020.

112. R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hy-
pergraphs. SIAM Journal on computing, 13(3):566–579, 1984.

113. R. E. Tarjan and M. Yannakakis. Addendum: Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM Journal on Computing, 14(1):254, 1985.

114. M. Thoma, H. Cheng, A. Gretton, J. Han, H.-P. Kriegel, A. Smola, L. Song,
P. S. Yu, X. Yan, and K. M. Borgwardt. Discriminative frequent subgraph
mining with optimality guarantees. Statistical Analysis and Data Mining, 3(5):
302–318, 2010.

115. J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Mapping
the empirical and extremal geography of large graph collections. In WWW,
pages 1307–1318, 2013.

116. J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph frequencies: Mapping
the empirical and extremal geography of large graph collections. In Proceedings
of the 22nd international conference on World Wide Web, pages 1307–1318.
ACM, 2013.

117. S. Wasserman and K. Faust. Social network analysis: Methods and applications,
volume 8. Cambridge university press, 1994.

118. D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks.
Nature, 393(6684):440–442, 1998. ISSN 0028-0836. doi: 10.1038/30918. URL
http://dx.doi.org/10.1038/30918.

119. D. J. Watts and S. H. Strogatz. Collective dynamics of ‘’small-world’networks.
nature, 393(6684):440, 1998.

120. X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In ICDM,
pages 721–724. IEEE, 2002.

97

http://dx.doi.org/10.1137/0214020
http://dx.doi.org/10.1038/30918

121. M. Yannakakis. Computing the minimum fill-in is np-complete. SIAM Journal
on Algebraic Discrete Methods, 2(1):77–79, 1981.

122. Ö. N. Yaveroğlu, T. Milenković, and N. Pržulj. Proper evaluation of alignment-
free network comparison methods. Bioinformatics, 31(16):2697–2704, 2015.

123. B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

This document was prepared & typeset with pdfLATEX, and formatted with
nddiss2ε classfile (v3.2013[2013/04/16]) provided by Sameer Vijay and updated

by Megan Patnott.

98

	Abstract
	CONTENTS
	FIGURES
	TABLES
	ACKNOWLEDGMENTS
	CHAPTER 1: INTRODUCTION
	1.1 Graph Mining
	1.2 Formal Language Theory and Graph Theory
	1.3 Contribution
	1.4 Impact

	CHAPTER 2: BACKGROUND
	2.1 Graphs and Hypergraphs
	2.1.1 Graph Properties

	2.2 Graph Models
	2.2.1 Generative Graph Models

	2.3 Hyperedge Replacement Grammars

	CHAPTER 3: LEARNING HYPEREDGE REPLACEMENT GRAMMARS
	3.1 Preliminaries
	3.1.1 Tree Decomposition
	3.1.2 Hyperedge Replacement Grammar

	3.2 Learning HRGs
	3.2.1 Binarization
	3.2.2 Tree Decomposition Pruning
	3.2.3 Tree Decompositions and HRGs
	3.2.3.1 Root Node
	3.2.3.2 Leaf Node

	3.2.4 Top-Down HRG Rule Induction
	3.2.5 Complexity Analysis

	3.3 Graph Generation
	3.3.1 Exact Generation
	3.3.2 Stochastic Generation
	3.3.3 Fixed-Size Generation
	3.3.4 Pruning Inside Probabilities

	3.4 Summary

	CHAPTER 4: EVALUATING GRAPH GENERATORS
	4.1 Real-world Datasets
	4.2 Methodology
	4.2.1 Graph Generation Results
	4.2.1.1 Global Measures

	4.2.2 Canonical Graph Comparison
	4.2.2.1 Graphlet Correlation Distance

	4.2.3 Graph Extrapolation
	4.2.4 Sampling and Grammar Complexity
	4.2.4.1 Model Size and Performance
	4.2.4.2 Runtime Analysis
	4.2.4.3 Graph Guarantees

	4.3 Summary

	CHAPTER 5: INFINITY MIRROR TEST FOR ANALYZING GRAPH GENERATORS
	5.1 Infinity Mirror Test
	5.2 Experiments
	5.2.1 Network Statistics or Measures
	5.2.1.1 Degree Distribution
	5.2.1.2 Eigenvector Centrality
	5.2.1.3 Hop Plot
	5.2.1.4 Graphlet Correlation Distance
	5.2.1.5 Clustering Coefficients
	5.2.1.6 Assortativity.

	5.2.2 Robustness of Chung-Lu Extensions

	5.3 Infinity Mirror for HRG
	5.3.1 Infinity Mirror Model Size

	5.4 Discussion

	CHAPTER 6: TREE DECOMPOSITION
	6.1 Background
	6.2 Comparing Tree Decompositions
	6.2.1 Datasets

	6.3 Methodology
	6.3.1 Variance in Tree Decomposition

	6.4 Discussion

	CHAPTER 7: SUMMARY AND FUTURE DIRECTIONS
	7.1 Collaborations
	7.1.1 HRG Extension to Temporal Graphs
	7.1.2 Latent Variable Probabilistic Graph Grammars

	7.2 Vision and Future Work
	7.2.1 Analytic Methods for the Network Properties of HRG Graphs
	7.2.2 Applications to Deep Learning
	7.2.3 Applications to Graph Engines

	BIBLIOGRAPHY

