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Generating Networks by Learning Hyperedge Replacement Grammars

Abstract

by

Salvador Aguiñaga

Network modeling is critical and central to the study of complex systems. Mod-

eling enables researchers to examine emergent behavior and related phenomena from

the milieu of interacting patterns at the local level. These complex systems are

diverse, ranging from the global economy, neuroscience, protein folding molecular

interactions, to the Internet. Evaluating network models on their ability to auto-

matically learn the underlying features is integral to algorithm development in many

areas of computational science.

Here we describe methods and develop algorithms that extend and evaluate hy-

peredge replacement grammars, a formalism in formal language theory. We detail

extensions for model-inference on real-world networks and graph generation. Dis-

covering patterns involved in system behavior to build models for real-world systems

that preserve many of the network properties during the generation step is the central

focus of this work. Growing similar structures at various scale is also crucial to the

evolution of the scientific tools required in today’s information landscape. Experi-

mental results demonstrate that hyperedge replacement grammars offer a new way to

learn network features that facilitate compelling graphical structure generation that

advances network science in areas of modeling and network analysis.
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CHAPTER 1

INTRODUCTION

Systems, natural or artificial, can be characterized by their function or their

purpose. A system consists of a set of entities and the interactions within. These

interactions, also referred to as relationships, give rise to global behavior of the system

that is characterized as either simple or complex. Complex systems can differ from

simple systems by way of lattices or random graphs from their intrinsic and non-

trivial topological features and patterns of connections found in real-world networks.

Mathematics aims to represents these systems through a powerful abstraction called

a graph or a network. Network science applies to problems across fields as diverse as

medicine, healthcare, politics, economics, and social science.

Representing complex systems as a graph, or as a network, allows us to draw on

methods and theories from mathematics (graph theory), physics (statistical mechan-

ics), computer science (data mining), and sociology (social structure). This combi-

nation of methods leads to the development of predictive models that shed light into

physical, biological, and social phenomena [21, 112]. Model development allows us

to understand the many features at the heart of real-world graphs. For example, a

significant property of many graphs is community structure. This property exam-

ines how tightly connected entities are (or not) in a graph. Combining statistical

mechanics, sociometry, and graph theory allows for methods to explore where nodes

fall in relation to a community’s boundary. Evaluating community detection meth-

ods on a real-world graph often requires the same evaluation on computer-generated

graphs [35, 72]. Constructing computer-generated or synthetic graphs to mimic and
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preserve one or more of these network properties is challenging. Automatically gen-

erating graphs using novel computational approaches is one way to address this.

The rate at which people and machines create and consume information pushes the

boundaries of our technology to be able to gain insight and new knowledge. The new

digital age begs for innovative tools to help us analyze the deluge of data in order to

glean new knowledge and insights [97].

Capturing and utilizing certain properties in a graph of interest is critical to the

development or generation of new graphs. One method is to incorporate certain

network features into the graph generation step. For example, if the number of

triangles in a reference graph is important, then we want to maintain that network

feature in our synthetic graphs; Exponential Random Graphs Model (ERGM) is a

useful way to achieve this. Other models excel at generating similar graphs with a

degree centrality consistent with properties observed in the original (or reference)

graph [45, 73]. This thesis focuses on computational methods that examine graph

micro-structure and leverage local connection patterns to infer a model of system

structure. The graph model’s usefulness includes growing synthetic graphs, graph

classification, and generating network architectures. By generating realistic synthetic

graphs we can create new networks whose properties are similar to those in the

reference or training graph.

In this thesis, I investigate a relationship between graph theory and formal language

theory that allows for a Hypererdge Replacement Grammar (HRG) to be extracted

from a graph. I further show that the HRG can be used to represent the building

blocks of these graphs and go on to use this to generate synthetic graphs that remain

similar to the original graph.

This work builds on earlier efforts by my collaborators, Tim Weninger and David

Chiang, who pieced together the utility of HRG for graphs other than abstract mean-
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TABLE 1.1

Thesis Overview

Chapter Title Research Problem

3 HRG model inference and
stochastic graph genera-
tion

Can an HRG capture graph features to
grow graphs with properties matching the
input or reference graph?

4 HRG using a new fixed-
size graph generation ap-
proach

Can we grow graphs given a desired num-
ber of vertices?

5 Model Robustness How well does the model captures essential
features in the real world network?

6 Tree decomposition What controls or biases the production
rules?

ing representations (AMR).

1.1 Contributions and Collaborations

This thesis is organized around the following themes: (I) HRG stochastic graph

generation, (II) HRG for fixed-size graph generation, (III) measures of model re-

silience, and (IV ) model bias resulting from tree decomposition algorithms. A sum-

mary of the key challenges for each theme is detailed in Table 1.1.

1.2 Impact

The introduction of the HRG graph model has triggered interest in areas of neural

network architecture designs for deep learning. HRG graph model is now taught in

undergraduate and graduate Network Science course in the Department of Computer

Science and Engineering. By proposing the use of the HRG graph model to engineer
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deep neural network architectures, I won a Department of Energy Student Research

award in 2017.

1.2.1 Collaborations

1.2.1.1 HRG extension to temporal graphs

A critical challenge in many applications is related to the constant changing nature

of the data, for instance the dynamic properties that are observed along a temporal

dimension. Consider for example the behavior of a friendship network. Depending

on how a network of friends is defined new friends join the network over time. If we

define the network more by the function of the ties (the interactions between friends)

we can have at any one time only certain friends active and others dormant in their

interactions with other members of the group. A graphical abstraction for this system

is characterized by the ties that appear (active) and by those that disappear.

Consider another scenario that looks at the travelers at an airport. Modeling

the incoming and outgoing flights of the passengers is best done by considering the

temporal dynamics. Alternatively, we can potentially model the dynamics of how

passengers move about a fixed space. The latter is concerned with a spatial com-

ponent of the data, but still tightly coupled to the temporal dimension. How can

we incorporate the temporal properties of the nodes and edges into a model? This

requires extending the HRG model to examine the time-stamps of edges. This idea

was explored and the results presented at the Mining and Learning with Graphs

Workshop [86]. Although not fully explored in this thesis, this illuminates another

avenue for studying the application of HRG graph model.

1.2.1.2 Latent Variable Probabilistic Graph Grammars

This work address one of the limitations of the HRG model. The graph grammar

encodes only sufficient information to ensure that the result is well-formed. In the
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tree decomposition step, we transform the the input graph into tree. The rules we

extract come from the top, middle and bottom of the tree graph, however in the

graph generation process we draw rules based on frequency. The central question

here is how do we provide context to the rules that is less aligned on their frequency

and more on where in the tree they come from. This context could influence when

the rules should fire when generating a new graph. My collaborator Xinyi Wang

proposed a mechanism that corrects for the problem described above. We model an

HRG-rule’s context via latent variables and show that this approach can build better

synthetic graphs. This work is currently under review and is not delineated in this

thesis, yet it illuminates yet another area of research.
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CHAPTER 2

BACKGROUND

2.1 Graphs

In discrete mathematics graphs are powerful and versatile abstractions. A graph

is usually described as sets of vertices, V , and the interactions between vertices are

often represented as edges that connect at most two vertices, E.

2.1.1 Hypergraphs

A hypergraph H is a generalization of a classical graph. A hypergraph consists of

a collections of finite sets containing vertices. These sets are called hyperedges such

that edges may connect any number of vertices.

2.1.2 Graph Properties

The semantics of graphs gives rise to sets of properties, features, or attributes that

intrinsically characterize the graph. Graph properties take on the role of measuring

the graph. For instance, certain graph properties describe size (the number of edges)

and order (the number of nodes or vertices). Other measures help describe the

network in greater detail and, in some instances, infer function. For example, the

degree is a network property that helps understand a vertex’s connectivity to other

nodes [10, 30]. The number of edges incident on any given node helps understand

each node’s importance or influence in the graph.

Other graph properties have been described in scientific literature as far back

as the 1930’s with Jacob L. Moreno’s seminal work in sociometry [77] to the more
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recent work describing scale-free power law distribution as a common property ob-

served in large networks [9]. For more on the historical unfolding of social network

analysis metrics see the survey’s by Wasserman and Faust [110], Freeman [31], and

Newman [84].

In this dissertation we employ several graph metrics to analyze graphs and hy-

pergraphs. Although many properties have been discovered and detailed in related

literature, we focus on three of the principal properties from which most others can

be derived.

Degree Distribution. The degree distribution of a graph is the distribution of

the number of edges connecting to a particular vertex. Barabási and Albert initially

discovered that the degree distribution of many real world graphs follows a power law

distribution such that the number of nodes Nd ∝ d−γ where γ > 0 and γ is typically

between 2 and 3 [9].

Eigenvector Centrality. The principal eigenvector is often associated with the

centrality or “value” of each vertex in the network, where high values indicate an

important or central vertex and lower values indicate the opposite. A skewed dis-

tribution points to a relatively few “celebrity” vertices and many common nodes.

The principal eigenvector value for each vertex is also closely associated with the

PageRank and degree value for each node.

Hop Plot. The hop plot of a graph shows the number of vertex-pairs that are

reachable within x hops. The hop plot, therefore, is another way to view how quickly a

vertex’s neighborhood grows as the number of hops increases. As in related work [69]

we generate a hop plot by picking 50 random nodes and perform a complete breadth

first traversal over each graph.

The aforementioned network properties primarily focus on statistics of the global

network. However, there is mounting evidence arguing that graphlet comparisons are

the most complete way to measure the similarity between two graphs [91, 108]. The
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graphlet distribution succinctly describes the number of small, local substructures

that compose the overall graph and therefore more completely represents the details

of what a graph “looks like.” It is possible for two very dissimilar graphs to have the

same degree distributions, hop plots, etc., but it remains difficult for two dissimilar

graphs to fool a comparison with the graphlet distribution.

Graphlet Correlation Distance Recent work from systems biology has identi-

fied a new metric called the Graphlet Correlation Distance (GCD). The GCD com-

putes the distance between two graphlet correlation matrices – one matrix for each

graph [113]. It measures the frequency of the various graphlets present in each graph,

i.e., the number of edges, wedges, triangles, squares, 4-cliques, etc., and compares

the graphlet frequencies between two graphs. Because the GCD is a distance metric,

lower values are better. The GCD can range from [0,+∞], where the GCD is 0 if

the two graphs are isomorphic.

2.2 Graph Models

Graph models are powerful mathematical abstractions frequently and widely used

in the natural sciences, engineering, and in the social sciences. A core function of these

models is to represent the essential properties of systems or system behaviour at all

scales. Moreover, these models consist of a variety of abstract structures that can be

classified into state variables (or random variables), which, when linked together, can

describe a range of network information from simple to complex network structures.

Swiss mathematician Leonhard Euler is credited as one of the first mathemati-

cians to work on problems using graphical abstractions [28, 83] as far back as the

early 1700s. Two hundred years later, the social sciences invested in the study of

social networks. By the late 1950s and early sixties, interest in models that generate

networks as a mode to better understand them was gaining attention in academia and

industry. Currently, significant advancement in the study of network structure using
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models for generating random graphs was pioneered in by Edgar Gilber, Paul Erdos

and Alfred Renyi [27, 34]. Two decades ago Watts, Strogatz, Barabasi, and Albert

introduced models of Small World networks [112] and Preferential Attachment [6] a

seminal set of works. With the arrival of the Internet and development of the Web,

applied network and graph theory spark feverish interest from both, academia and

industry.

2.2.1 Generative Graph Models

Generative models that underlie the ever-growing Web graph have received a great

deal attention for some time now. This graph’s nodes and edges exhibit power law

distributions based on empirical studies [29]. Network scientists have found that the

preferential attachment model, which generates a graph by attaching new nodes to

popular existing nodes, approximates the empirical growth pattern. Based on this

model, and subsequent refinements, network engineers are able to understand the

large scale behavior of the Web. The famous PageRank algorithm, and the industry

giant Google, is one such example of transformative real world implications.

Another class of network generators are Kronecker graphs. Using the Kronecker

matrix operation, network scientists are able to learn a network model that can

generate large, scale free graphs that “look like” their empirical counterparts [66, 73].

Exponential random graphs models (ERGMs) belong to a class of statistical mod-

els, also known as p∗ models. They have been used extensively to model social be-

havior in humans and animals. More recently, ERGMs have been used to model

complex neurological interactions of the brain [14, 38, 101]. Goldenberg et al. survey

statistical models and discuss how ERGMs are an extension of the Erdos-Renyi-

Gilbert model to account for popularity, expansiveness and network effects due to

reciprocation [32, 37].
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2.3 Hyperedge Replacement Grammars

This dissertation presents a new graph generation methodology based on the

formalism of Hyperedge Replacement Grammars (HRGs). HRGs are a graphical

counterpart to context free string grammars used in compilers and natural language

processing [23]. Like in a context free string grammar, an HRG contains a set of

production rules P , each of which contains a left hand side (LHS) A and a right hand

side (RHS) R. In context free string grammars, the LHS must be a nonterminal

character, which can be replaced by some set of nonterminal or terminal characters

on the RHS of the rule. In HRGs, nonterminals are graph-cliques and a RHS can be

any graph (or hypergraph) fragment.

Just as a context free string grammar generates a string, an HRG can generate a

graph by repeatedly choosing a nonterminal A and rewriting it using a production rule

A → R. The replacement hypergraph fragment R can itself have other nonterminal

hyperedges, so this process is repeated until there are no more nonterminals in the

graph.

HRGs have been studied for some time in discrete mathematics and graph theory

literature. They are conventionally used to generate graphs with very specific struc-

tures, e.g., rings, trees, stars. A drawback of many current applications of HRGs

is that their production rules must be manually defined. For example, the produc-

tion rules that generate a ring-graph are distinct from those that generate a tree,

and defining even simple grammars by hand is difficult to impossible. Very recently,

Kemp and Tenenbaum developed an inference algorithm that learned probabilities of

the HRG’s production rules from real world graphs, but they still relied on a handful

of rather basic hand-drawn production rules (of a related formalism called vertex

replacement grammar) to which probabilities were learned [54]. Kukluk, Holder and

Cook were able to define a grammar from frequent subgraphs [20, 44, 60–62], but

their methods have a coarse resolution because frequent subgraphs only account for
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a small portion of the overall graph topology.
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CHAPTER 3

GROWING GRAPHS

3.1 Introduction

Teasing out signatures of interactions buried in overwhelming volumes of infor-

mation is one of the most basic challenges in scientific research. Understanding how

information is organized can help us discover its fundamental underlying properties.

Researchers do this when they investigate the relationships between diseases, cell

functions, chemicals, or particles, and we all learn new concepts and solve problems

by understanding the relationships between the various entities present in our every-

day lives. These entities can be represented as networks, or graphs, in which local

behaviors can be easily understood, but whose global view is highly complex.

These networks exhibit a long and varied list of global properties, including heavy-

tailed degree distributions [104] and interesting growth characteristics [69, 70], among

others. Recent work has found that these global properties are merely products of

a graph’s local properties, in particular, graphlet distributions [108]. These small,

local substructures often reveal the degree distributions, diameter and other global

properties of a graph [91, 108], and have been shown to be a more complete way

to measure the similarity between two or more graphs [113]. Our overall goal, and

the goal of structural inference algorithms in general, is to learn the local structures

that, in aggregate, help describe the observed interactions and generalize to explain

further phenomena.

For example, physicists and chemists have found that many chemical interactions

are the result of underlying structural properties of the individual elements. Simi-
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larly, biologists have agreed that simple tree structures are useful when organizing

the evolutionary history of life, and sociologists find that clique-formation, e.g., tri-

adic closure, underlies community development [8, 15, 96]. In other instances, the

structural organization of the entities may resemble a ring, a clique, a star, or any

number of complex configurations.

In this work, we describe a general framework that can discover, from any large

network, simple structural forms in order to make predictions about the topological

properties of a network. In addition, this framework is able to extract mechanisms

of network generation from small samples of the graph in order to generate net-

works that satisfy these properties. Our major insight is that a network’s clique tree

encodes simple information about the structure of the network. We use the closely-

related formalism of hyperedge replacement grammars (HRGs) as a way to describe

the organization of real world networks.

My Contribution

• Combine prior theoretical work on clique trees, tree decomposition and treewidth
to automatically learn an HRG for real world graphs.

• Evaluate existing graph generators, like exponential random graphs, small world
graphs, Kronecker graphs, and so on, learn parameters from some input graph
to generate new graphs stochastically.

• This model is also able to stochastically generate different-sized graphs that
share similar properties to the original graph.

• Contributed to the code repository

Unlike previous models that manually define the space of possible structures [53]

or define the grammar by extracting frequent subgraphs [61, 63], our framework can

automatically discover the necessary forms and use them to recreate the original

graph exactly as well as infer generalizations of the original network. Our approach

can handle any type of graph and does not make any assumption about the topology

of the data.
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After reviewing some of the theoretical foundations of clique trees and HRGs, we

show how to extract an HRG from a graph and use it to reconstruct the original

graph. We then show how to use the extracted grammar to stochastically generate

generalizations of the original graph. Finally, we present experimental results that

compare the stochastically generated graphs with the original graphs. We show that

these generated graphs exhibit a wide range of properties that are very similar to the

properties of the original graphs, and significantly outperform existing graph models

at generating subgraph distributions similar to those found in the original graph.

3.2 Preliminaries

The new work in this paper begins where previous work [4, 16, 65, 92] left off.

However, before we begin, some background knowledge is crucial to understand the

key insights of our main contributions.

We begin with an arbitrary input hypergraph H = (V,E), where V is a finite set

of vertices and E ⊆ V + is a set of hyperedges. A hyperedge e ∈ E can connect one or

more ordered vertices and is written e = (v1, v2, . . . , vk). Common graphs (e.g., social

networks, Web graphs, information networks) are a particular case of hypergraphs

where each edge connects exactly two vertices. For convenience, all of the graphs in

this paper will be simple, connected and undirected, although these restrictions are

not vital. In the remainder of this section, we refer mainly to previous developments

in clique trees and their relationship to hyperedge replacement grammars in order to

support the claims made in sections 3 and 4.

3.2.1 Tree Decomposition

All graphs can be decomposed (though not uniquely) into a clique tree, also known

as a tree decomposition, junction tree, join tree, intersection tree, or cluster graph.

Within the pattern recognition community, clique trees are best known for their role
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in exact inference in probabilistic graphical models, so we introduce the preliminary

work from a graphical modeling perspective; for an expanded introduction, we refer

the reader to Chapters 9 and 10 of Koller and Friedman’s textbook [57].

Definition 3.2.1. A clique tree of a graph H = (V,E) is a tree CT , each of whose

nodes η is labeled with a Vη ⊆ V and Eη ⊆ E, such that the following properties hold:

1. Vertex Cover: For each v ∈ V , there is a vertex η ∈ CT such that v ∈ Vη.

2. Edge Cover: For each hyperedge ei = {v1, . . . , vk} ∈ E there is exactly one node
η ∈ CT such that e ∈ Eη. Moreover, v1, . . . , vk ∈ Vη.

3. Running Intersection: For each v ∈ V , the set {η ∈ CT | v ∈ Vη} is connected.

Definition 3.2.2. The width of a clique tree is max(|Vη − 1|), and the treewidth of

a graph H is the minimal width of any clique tree of H.

Unfortunately, finding the optimal elimination ordering and corresponding minimal-

width clique tree is NP-Complete [7]. Fortunately, many reasonable approximations

exist for general graphs: in this paper, we employ the commonly used maximum

cardinality search (MCS) heuristic introduced by Tarjan and Yannikakis [107] to

compute a clique tree with a reasonably-low, but not necessarily minimal, width.

Simply put, a clique tree of any graph (or any hypergraph) is a tree. Each of

whose nodes we label with nodes and edges from the original graph, such that vertex

cover, edge cover and the running intersection properties hold, and the “width” of

the clique tree measures how tree-like the graph is. The reason for the interest in

finding the clique tree of a graph is because many computationally difficult problems

can be solved efficiently when the data is constrained to be a tree.

Figure 3.1 shows a graph and its minimal-width clique tree (showing Vη for each

node η). We label nodes with lowercase Latin letters. We will refer back to this

graph and clique tree as a running example throughout this paper.
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Figure 3.1. A graph and one possible minimal-width clique tree for it.
Ghosted edges are not part of Eη; they are shown only for explanatory

purposes.

3.2.2 Hyperedge Replacement Grammar

The key insight for this task is that a network’s clique tree encodes robust and

precise information about the network. An HRG, extracted from the clique-tree,

contains graphical rewriting rules that can match and replace graph fragments similar

to how a context-free Grammar (CFG) rewrites characters in a string. These graph

fragments represent a succinct, yet complete description of the building blocks of the

network, and the rewriting rules of the HRG describe the instructions on how the

graph is pieced together. For a thorough examination of HRGs, we refer the reader

to the survey by Drewes et al. [25].

Definition 3.2.3. A hyperedge replacement grammar is a tuple G = 〈N, T, S,P〉,

where

1. N is a finite set of nonterminal symbols. Each nonterminal A has a nonnegative
integer rank, which we write |A|.

2. T is a finite set of terminal symbols.

3. S ∈ N is a distinguished starting nonterminal, and |S| = 0.

4. P is a finite set of production rules A→ R, where
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• A, the left hand side (LHS), is a nonterminal symbol.

• R, the right hand side (RHS), is a hypergraph whose edges are labeled by
symbols from T ∪ N . If an edge e is labeled by a nonterminal B, we must
have |e| = |B|.
• Exactly |A| vertices of R are designated external vertices and numbered 1, . . . , |A|.

The other vertices in R are called internal vertices.

When drawing HRG rules, we draw the LHS A as a hyperedge labeled A with

arity |A|. We draw the RHS as a hypergraph, with external vertices drawn as solid

black circles and the internal vertices as open white circles.

If an HRG rule has no nonterminal symbols in its RHS, we call it a terminal rule.

If an HRG rule has exactly one nonterminal symbol in its RHS, we call it a unary

rule.

Definition 3.2.4. Let G be an HRG and P = (A → R) be a production rule of G.

We define the relation H ′ ⇒ H∗ (H∗ is derived in one step from H ′) as follows.

H ′ must have a hyperedge e labeled A; let v1, . . . , vk be the vertices it connects. Let

u1, . . . , uk be the external vertices of R. Then H∗ is the graph formed by removing e

from H ′, making an isomorphic copy of R, and identifying vi with the copies of ui

for each i = 1, . . . , k.

Let ⇒∗ be the reflexive, transitive closure of ⇒. Then we say that G generates

a graph H if there is a production S → R and R ⇒∗ H and H has no edges labeled

with nonterminal symbols.

In other words, a derivation starts with the symbol S, and we repeatedly choose

a nonterminal A and rewrite it using a production A → R. The replacement hy-

pergraph fragments R can itself have other nonterminal hyperedges, so this process

repeats until there are no more nonterminal hyperedges. The following sections illus-

trate these definitions more clearly.
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3.2.3 Hyperedge Replacement Grammar

The key insight for this task is that a network’s clique tree encodes robust and

precise information about the network. An HRG, which is extracted from the clique

tree, contains graphical rewriting rules that can match and replace graph fragments

similar to how a Context Free Grammar (CFG) rewrites characters in a string. These

graph fragments represent a succinct, yet complete description of the building blocks

of the network, and the rewriting rules of the HRG represent the instructions on how

the graph is pieced together. For a thorough examination of HRGs, we refer the

reader to the survey by Drewes et al. [24].

Definition 3.2.5. A hyperedge replacement grammar is a tuple G = 〈N, T, S,P〉,

where

1. N is a finite set of nonterminal symbols. Each nonterminal A has a nonnegative
integer rank, which we write |A|.

2. T is a finite set of terminal symbols.

3. S ∈ N is a distinguished starting nonterminal, and |S| = 0.

4. P is a finite set of production rules A→ R, where

• A, the left hand side (LHS), is a nonterminal symbol.

• R, the right hand side (RHS), is a hypergraph whose edges are labeled by
symbols from T ∪ N . If an edge e is labeled by a nonterminal B, we must
have |e| = |B|.
• Exactly |A| vertices of R are designated external vertices. The other vertices

in R are called internal vertices.

When drawing HRG rules, we draw the LHS A as a hyperedge labeled A with

arity |A|. We draw the RHS as a hypergraph, with the external vertices drawn as

solid black circles and the internal vertices as open white circles. If an HRG rule has

no nonterminal symbols in its RHS, we call it a terminal rule.

Definition 3.2.6. Let G be an HRG and P = (A → R) be a production rule of G.

We define the relation H ′ ⇒ H∗ (H∗ is derived in one step from H ′) as follows.
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H ′ must have a hyperedge e labeled A; let v1, . . . , vk be the vertices it connects. Let

u1, . . . , uk be the external vertices of R. Then H∗ is the graph formed by removing e

from H ′, making an isomorphic copy of R, and identifying vi with the copies of ui

for each i = 1, . . . , k.

Let ⇒∗ be the reflexive, transitive closure of ⇒. Then we say that G generates

a graph H if there is a production S → R and R ⇒∗ H and H has no edges labeled

with nonterminal symbols.

In other words, a derivation starts with the symbol S, and we repeatedly choose

a nonterminal A and rewrite it using a production A→ R. The replacement hyper-

graph fragments R can itself have other nonterminal hyperedges, so this process is

repeated until there are no more nonterminal hyperedges. These definitions will be

clearly illustrated in the following sections.

3.2.4 The Missing Link

Clique trees and hyperedge replacement graph grammars have been studied for

some time in discrete mathematics and graph theory literature. HRGs are convention-

ally used to generate graphs with very specific structures, e.g., rings, trees, stars. A

drawback of many current applications of HRGs is that their production rules must

be hand drawn to generate some specific graph or class of graphs. Very recently,

Kemp and Tenenbaum developed an inference algorithm that learned probabilities

from real world graphs, but still relied on a handful of rather basic hand-drawn pro-

duction rules (of a related formalism called vertex replacement grammar) to which

the learned probabilities were assigned [53].

The main contribution of this paper is to combine prior theoretical work on clique

trees, tree decomposition and treewidth to automatically learn an HRG for real world

graphs. Existing graph generators, like exponential random graphs, small world

graphs, Kronecker graphs, and so on, learn parameters from some input graph to
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generate new graphs stochastically. Unlike these previous approaches, our model has

the ability to reproduce the exact same graph topology where the new graph is guar-

anteed to be isomorphic to the original graph. Our model is also able to stochastically

generate different-sized graphs that share similar properties to the original graph.

3.3 Learning Graph Grammars

The first step in learning an HRG from a graph is to compute a clique tree from

the original graph. Then, this clique tree induces an HRG in a natural way, which

we demonstrate in this section.

3.3.1 Clique Trees and HRGs

Let η be an interior node of the clique tree T , let η′ be its parent, and let η1, . . . , ηm

be its children. Node η corresponds to an HRG production rule A → R as follows.

First, |A| = |Vη′ ∩ Vη|. Then, R is formed by:

• Adding an isomorphic copy of the vertices in Vη and the edges in Eη

• Marking the (copies of) vertices in Vη′ ∩ Vη as external vertices

• Adding, for each ηi, a nonterminal hyperedge connecting the (copies of) vertices
in Vη ∩ Vηi .

Figure 3.2 shows an example of the creation of an HRG rule. In this example,

we focus on the middle clique-tree node Vη = {d, e, f}, outlined in bold. We choose

nonterminal symbol N for the LHS, which must have rank 2 because η has 2 ver-

tices in common with its parent. The RHS is a graph whose vertices are (copies

of) Vη = {d, e, f}. Vertices d and e are marked external (and numbered 1 and 2,

arbitrarily) because they also appear in the parent node. The terminal edges are

Eη = {(d, f), (e, f)}. There is only one child of η, and the nodes they have in common

are e and f, so there is one nonterminal hyperedge connecting e and f. Next we deal

with the special cases of the root and leaves.
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Figure 3.2. Example of hyperedge replacement grammar rule creation from
an interior vertex of the clique tree. Note that lowercase letters inside

vertices are for explanatory purposes only; only the numeric labels outside
external vertices are actually part of the rule.
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Figure 3.3. Example of hyperedge replacement grammar rule creation from
the root node of the clique tree.

Root Node. If η is the root node, then it does not have any parent cliques, but

may still have one or more children. Because η has no parent, the corresponding rule

has a LHS with rank 0 and a RHS with no external vertices. In this case, we use the

start nonterminal S as the LHS, as shown in Figure 3.3.

The RHS is computed in the same way as the interior node case. For the example

in Fig. 3.3, the RHS has vertices that are copies of c, d, and e. In addition, the

RHS has two terminal hyperedges, Eη = {(c, d), (c, e)}. The root node has two

children, so there are two nonterminal hyperedges on the RHS. The right child has
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two vertices in common with η, namely, d and e; so the corresponding vertices in the

RHS are attached by a 2-ary nonterminal hyperedge. The left child has three vertices

in common with η, namely, c, d, and e, so the corresponding vertices in the RHS are

attached by a 3-ary nonterminal hyperedge.
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1
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a b
N
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Figure 3.4. Example of hyperedge replacement grammar rule creation from
a leaf vertex of the clique tree.

Leaf Node. If η is a leaf node, then the LHS is calculated the same as in the

interior node case. Again we return to the running example in Fig. 3.4 (on the next

page). Here, we focus on the leaf node {a, b, e}, outlined in bold. The LHS has rank

2, because η has two vertices in common with its parent.

The RHS is computed in the same way as the interior node case, except no

new nonterminal hyperedges are added to the RHS. The vertices of the RHS are

(copies of) the nodes in η, namely, a, b, and e. Vertices b and e are external be-

cause they also appear in the parent clique. This RHS has two terminal hyperedges,

Eη = {(a, b), (a, e)}. Because the leaf clique has no children, it cannot produce any

nonterminal hyperedges on the RHS; therefore this rule is a terminal rule.
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3.3.2 Top-Down HRG Rule Induction

We induce production rules from the clique tree by applying the above extraction

method top down. Because trees are acyclic, the traversal order does not matter, yet

there are some interesting observations we can make about traversals of moderately

sized graphs. First, exactly one HRG rule will have the special starting nonterminal

S on its LHS; no mention of S will ever appear in any RHS. Similarly, the number

of terminal rules is equal to the number of leaf nodes in the clique tree.

Larger graphs will typically produce larger clique trees, especially sparse graphs

because they are more likely to have a larger number of small maximal cliques. These

larger clique trees will produce a large number of HRG rules, one for each clique in

the clique tree. Although it is possible to keep track of each rule and its traversal

order, we find, and will later show in the experiments section, that the same rules

are often repeated many times.

Figure 3.5 shows the 6 rules that are induced from the clique trees illustrated in

Fig. 3.1 and used in the running example throughout this section.

3.3.3 Complexity Analysis

The HRG rule induction steps described in this section can be broken into two

steps: (i) creating a clique tree and (ii) the HRG rule extraction process.

Unfortunately, finding a clique tree with minimal width i.e., the treewidth tw,

is NP-Complete. Let n and m be the number of vertices and edges respectively in

H. Tarjan and Yannikakis’ Maximum Cardinality Search (MCS) algorithm finds a

usable clique tree [105] in linear time O(n+m), but is not guaranteed to be minimal.

The running time of the HRG rule extraction process is determined exclusively

by the size of the clique tree as well as the number of vertices in each clique tree

node. From Defn. 3.2.1 we have that the number of nodes in the clique tree is m.

When minimal, the number of vertices in an the largest clique tree node max(|ηi|)
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Figure 3.5. Complete set of production rules extracted from the example
clique tree. Note that lowercase letters inside vertices are for explanatory

purposes only; only the numeric labels outside external vertices are actually
part of the rule.

(minus 1) is defined as the treewidth tw, however, clique trees generated by MCS have

max(|ηi|) bounded by the maximum degree of H, denoted as ∆ [33]. Therefore, given

an elimination ordering from MCS, the computational complexity of the extraction

process is in O(m ·∆).

3.4 Graph Generation

In this section we show how to use the HRG extracted from the original graph H

(as described in the previous section) to generate a new graph H∗. Ideally, H∗ will

be similar to, or have features that are similar to the original graph H. We present

two generation algorithms. The first generation algorithm is exact generation, which,

as the name implies, creates an isomorphic copy of the original graph H∗ ≡ H. The

second generation algorithm is a fast stochastic generation technique that generates

random graphs with similar characteristics to the original graph. Each generation

algorithm starts with H ′ containing only the starting nonterminal S.
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3.4.1 Exact Generation

Exact generation operates by reversing the HRG extraction process. In order to

do this, we must store the HRG rules P as well as the clique tree T (or at least the

order that the rules were created). The first HRG rule considered is always the rule

with the nonterminal labelled S as the LHS. This is because the clique tree traversal

starts at the root, and because the root is the only case that results in S on the LHS.

The previous section defined an HRG G that is constructed from a clique tree T

of some given hypergraph H, and Defn. 3.2.6 defines the application of a production

rule (A → R) that transforms some hypergraph H ′ into a new hypergraph H∗. By

applying the rules created from the clique tree in order, we will create an H∗ that is

isomorphic to the original hypergraph H.

In the remainder of this section, we provide a more intuitive look at the exact

generation property of the HRG by recreating the graph decomposed in the running

example.

LHS Application of RHSNew Graph H∗

S

Rule 1

N

yx

z

T
T

N

1 2

3

N

N

Figure 3.6. Application of Rule 1 to replace the starting nonterminal S
with the RHS to create a new graph H∗.

Using the running example from the previous section, the application of Rule 1

illustrated in Fig. 3.6 shows how we transform the starting nonterminal into a new
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hypergraph, H∗. This hypergraph now has two nonterminal hyperedges correspond-

ing to the two children that the root clique had in Fig. 3.1. The next step is to replace

H ′ with H∗ and then pick a nonterminal corresponding to the leftmost unvisited node

of the clique tree.

LHS Application of RHS New Graph H∗

a b

c

N
Rule 2

a:1 b:2

c:3

x

T T

N

N

N

N

4

21

3

Figure 3.7. Application of Rule 2 to replace a size-3 nonterminal in H ′ with
the RHS to create a new graph H∗.

We proceed down the left hand side of the clique tree, applying Rule 2 to H ′ as

shown in Fig. 3.7. The LHS of Rule 2 matches the 3-ary hyperedge and replaces it

with the RHS, which introduces a new internal vertex, two new terminal edges and a

new nonterminal hyperedge. Again we set H ′ to be H∗ and continue to the leftmost

leaf in the example clique tree.

The leftmost leaf in Fig. 3.1 corresponds to the application of Rule 3; it is the next

to be applied to the new nonterminal in H∗ and replaced by the RHS as illustrated

in Figure 3.8. The LHS of Rule 3 matches the 2-ary hyperedge shown and replaces

it with the RHS, which creates a new internal vertex along with two terminal edges.

Because Rule 3 comes from a leaf node, it is a terminal rule and therefore does not add

any nonterminal hyperedges. This concludes the left subtree traversal from Fig. 3.1.

Continuing the example, the right subtree in the clique tree illustrated in Fig. 3.1
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Figure 3.8. Application of Rule 3 to replace a size-2 nonterminal in H ′ with
the RHS to create a new graph H∗.

has three further applications of the rules in P . As illustrated in Fig. 3.9, Rule 4 adds

the final vertex, two terminal edges and one nonterminal hyperedge to H∗. Rule 5

and Rule 6 do not create any more terminal edges or internal vertices in H∗, but are

still processed because of the way the clique tree is constructed.

After all 6 rules are applied in order, we are guaranteed that H and H∗ are

isomorphic.

3.4.2 Stochastic Generation

There are many cases in which we prefer to create very large graphs in an efficient

manner that still exhibit the local and global properties of some given example graph

without storing the large clique tree as required in exact graph generation. Here

we describe a simple stochastic hypergraph generator that applies rules from the

extracted HRG in order to efficiently create graphs of arbitrary size.

In larger HRGs we usually find many A→ R production rules that are identical.

We can merge these duplicates by matching rule-signatures in a dictionary, and keep

a count of the number of times that each distinct rule has been seen. For example, if

there were some additional Rule 7 in Fig. 3.5 that was identical to, say, Rule 3, then

we would simply note that we saw Rule 3 two times.

To generate random graphs from a probabilistic HRG, we start with the special
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Figure 3.9. Application of Rules 4, 5 and 6 to create an H∗ that is
isomorphic to the original graph H.

starting nonterminal H ′ = S. From this point, H∗ can be generated as follows: (1)

Pick any nonterminal A in H ′; (2) Find the set of rules (A → R) associated with

LHS A; (3) Randomly choose one of these rules with probability proportional to its

count; (4) replace A in H ′ with R to create H∗; (5) Replace H ′ with H∗ and repeat

until there are no more nonterminal edges.

However, we find that although the sampled graphs have the same mean size as

the original graph, the variance is much too high to be useful. So we want to sample

only graphs whose size is the same as the original graph’s, or some other user-specified

size. Naively, we can do this using rejection sampling: sample a graph, and if the

size is not right, reject the sample and try again. However, this would be quite slow.

Our implementation uses a dynamic programming approach to do this exactly while

using quadratic time and linear space, or approximately while using linear time and
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space. We omit the details of this algorithm here, but the source code is available

online at https://github.com/nddsg/HRG/.

3.5 Experiments

HRGs contain rules that succinctly represent the global and local structure of the

original graph. In this section, we compare our approach against some of the state-of-

the-art graph generators. We consider the properties that underlie a number of real-

world networks and compare the distribution of graphs generated using generators

for Kronecker Graphs, the Exponential Random Graph, Chung-Lu Graphs, and the

graphs produced by the stochastic hyperedge replacement graph grammar.

In a manner similar to HRGs, the Kronecker and Exponential Random Graph

Models learn parameters that can be used to approximately recreate the original

graph H or a graph of some other size such that the stochastically generated graph

holds many of the same properties as the original graph. The Chung-Lu graph model

relies on node degree sequences to yield graphs that maintain this distribution. Ex-

cept in the case of exact HRG generation described above, the stochastically gener-

ated graphs are likely not isomorphic to the original graph. We can, however, still

judge how closely the stochastically generated graph resembles the original graph by

comparing several of their properties.

3.5.1 Real World Datasets

In order to get a holistic and varied view of the strengths and weaknesses of HRGs

in comparison to the other leading graph generation models, we consider real-world

networks that exhibit properties that are both common to many networks across

different fields, but also have certain distinctive properties.

The four real-world networks considered in this paper are described in Table 4.1.

The networks vary in their number of vertices and edges as indicated, but also differ in
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clustering coefficient, diameter, degree distribution and many other graph properties.

Specifically, the Enron graph is the email correspondence graph of the now defunct

Enron corporation. The ArXiv GR-QC graph is the co-authorship graph extracted

from the General Relativity and Quantum Cosmology section of ArXiv. The Internet

router graph represents traffic flows through Internet peers. And finally, DBLP is

the co-authorship graph from the DBLP dataset. Datasets are downloaded from the

SNAP and KONECT dataset repositories.

3.5.2 Methodology

We compare several different graph properties from the 4 classes of graph gener-

ators (HRG, Kronecker, Chung-Lu and exponential random graph (ERGM) models)

to the original graph H. Other models, such as the Erdős-Rényi random graph

model, the Watts-Strogatz small world model, the Barabási-Albert generator, etc.

are not compared here due to limited space and because Kronecker, Chung-Lu and

ERGM have been shown to outperform these earlier models when matching network

properties in empirical networks.

Kronecker graphs operate by learning an initiator matrix and then performing a

recursive multiplication of that initiator matrix in order to create an adjacency matrix

of the approximate graph. In our case, we use KronFit [73] with default parameters

to learn a 2 × 2 initiator matrix and then use the recursive Kronecker product to

generate the graph. Unfortunately, the Kronecker product only creates graphs where

the number of nodes is a power of 2, i.e., 2x, where we chose x = 15, x = 12, x = 13,

and x = 18 for Enron, ArXiv, Routers and DBLP graphs respectively to match the

number of nodes as closely as possible.

The Chung-Lu Graph Model (CL) takes, as input, a degree distribution and

generates a new graph of the similar degree distribution and size [17].

Exponential Random Graph Models (ERGMs) are a class of probabilistic models
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used to directly describe several structural features of a graph [93]. We used default

parameters in R’s ERGM package [46] to generate graph models for comparison.

In addition to the problem of model degeneracy, ERGMs do not scale well to large

graphs. As a result, DBLP and Enron could not be modelled due to their size, and

the ArXiv graph always resulted in a degenerate model. Therefore ERGM results

are omitted from this section.

The main strength of HRG is to learn the patterns and rules that generate a

large graph from only a few small subgraph-samples of the original graph. So, in

all experiments, we make k random samples of size s node-induced subgraphs by a

breadth first traversal starting from a random node in the graph [67]. By default

we set k = 4 and s = 500 empirically. We then compute tree decompositions from

the k samples, learn HRGs G1, G2, . . . , Gk, and combine them to create a single

grammar G =
⋃
iGi. For evaluation purposes, we generate 20 approximate graphs

for the HRG, Chung-Lu, and Kronecker models and plot the mean values in the

results section. We did compute the confidence internals for each of the models, but

omitted them from the graphs for clarity. In general, the confidence intervals were

very small for HRG, Kronecker and CL (indicating good consistency), but very big in

the few ERGM graphs that we were able to generate because of the model degeneracy

problem we encountered.

3.5.3 Graph Generation Results

Here we compare and contrast the results of approximate graphs generated from

HRG, Kronecker product, and Chung-Lu. We use the graph properties described in

Chapter 2 to compare the similarity between the real networks and their approximate

counterparts.

Figure 4.8 in chapter 4 shows the results of the degree distribution property on

the four real world graphs (frequency or count as a function of degree k). Recall
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that the graph results plotted here and throughout the results section are the mean

averages of 20 generated graphs. Each of the generated graphs is slightly different

from the original graphs in their own way. As expected, we find that the power

law degree distribution is captured by existing graph generators as well as the HRG

model.

Eigenvector Centrality. Figure 4.9 in chapter 4 shows the eigenvector scores for

each node ranked highest to lowest in each of the four real world graphs. Because the

x-axis represents individual nodes, Fig. 4.9 also shows the size difference among the

generated graphs. HRG performs consistently well across all four types of graphs, but

the log scaling on the y-axis makes this plot difficult to discern. To more concretely

compare the eigenvectors, the pairwise cosine distance between eigenvector centrality

of H and the mean eigenvector centrality of each model’s generated graphs appear

at the top of each plot in order. HRG consistently has the lowest cosine distance

followed by Chung-Lu and Kronecker.

Hop Plot. Figure 4.10 in chapter 4 demonstrates that HRG graphs produce hop

plots that are remarkably similar to the original graph. Chung-Lu performs rather

well in most cases; Kronecker has poor performance on Arxiv and DBLP graphs, but

still shows the correct hop plot shape.

Graphlet Correlation Coefficient

We computed the GCD between the original graph and each generated graph.

Figure 3.10 shows the GCD results. Although they are difficult to see due to their

small size, Fig. 3.10 includes error bars for the 95% confidence interval. The results

here are clear: HRG significantly outperforms the Chung-Lu and Kronecker models.

3.5.4 Graph Extrapolation

Recall that HRG learns the grammar from k = 4 subgraph-samples from the

original graph. In essence, HRG is extrapolating the learned subgraphs into a full
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Figure 3.10. Graphlet Correlation Distance. A measure of the distance
between the graphlet counts of both graphs, but also represents a canonical

measure of graph similarity.

size graph. This raises the question: if we only had access to a small subset of some

larger network, could we use our models to infer a larger (or smaller) network with

the same local and global properties? For example, given the 34-node Karate Club

graph, could we infer what a hypothetical Karate Franchise might look like?

Using two smaller graphs, Zachary’s Karate Club (34 nodes, 78 edges) and the

protein-protein interaction network of S. cerevisiae yeast (1,870 nodes, 2,240 edges),

we learned an HRG model with k = 1 and s = n, i.e., no sampling, and generated

networks of size-n∗ = 2x, 3x, . . . , 32x. For the protein graph we also sampled down to

n∗ = x/8. Powers of 2 were used because the standard Kronecker model can only gen-

erate graphs of that size. The Chung-Lu model requires a size-n∗ degree distribution

as input. To create the proper degree distribution we fitted a Poisson distribution

(λ = 2.43) and a Geometric Distribution (p = 0.29) to Karate and Protein graphs

respectively and drew n∗ degree-samples from their respective distributions. In all

cases, we generated 20 graphs at each size-point.

Rather than comparing raw numbers of graphlets, the GCD metric compares the

correlation of the resulting graphlet distributions. As a result, GCD is largely immune

to changes in graph size. Thus, GCD is a good metric for this extrapolation task.
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Figure 3.11. GCD of graphs extrapolated in multiples up to 32x from two
small graphs. HRG outperforms Chung-Lu and Kronecker models when

generating larger graphs. Lower is better.

Figure 3.11 in chapter 4 shows the mean GCD score and 95% confidence intervals for

each graph model. Not only does HRG generate good results at n∗ = 1x, the GCD

scores remain mostly level as n∗ grows.

3.5.5 Sampling and Grammar Complexity

We have shown that HRG can generate graphs that match the original graph from

k = 4 samples of s = 500-node subgraphs. If we adjust the size of the subgraph,

then the size of the clique tree will change causing the grammar to change in size

and complexity. A large clique tree ought to create more rules and a more complex

grammar, resulting in a larger model size and better performance; while a small clique

tree ought to create fewer rules and a less complex grammar, resulting in a smaller

model size and a lower performance.

To test this hypothesis we generated graphs by varying the number of subgraph

samples k from 1 to 32, while also varying the size of the sampled subgraph s from 100

to 600 nodes. Again, we generated 20 graphs for each parameter setting. Figure 4.16

in chapter 4 shows how the model size grows as the sampling procedure changes on
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the Internet Routers graph. Plots for other graphs show a similar growth rate and

shape, but are omitted due to space constraints.

To test the statistical correlation we calculated Pearson’s correlation coefficient

between the model size and sampling parameters. We find that the k is slightly

correlated with the model size on Routers (r = 0.31, p = 0.07), Enron (r = 0.27, p =

0.09), ArXiv (r = 0.21, p = 0.11), and DBLP (r = 0.29, p = 0.09). Furthermore, the

choice of s affects the size of the clique tree from which the grammars are inferred.

So its not surprising that s is highly correlated with the model size on Routers (r =

0.64), Enron(r=0.71), ArXiv (r = 0.68), and DBLP (r = 0.54) all with p� 0.001.

Because we merge identical rules when possible, we suspect that the overall growth

of the HRG model follows Heaps law [43], i.e., that the model size of a graph can

be predicted from its rules; although we save a more thorough examination of the

grammar rules as a matter for future work.

3.5.5.1 Model size and Performance

One of the disadvantages of the HRG model, as indicated in Fig. 4.16, is that the

model size can grow to be very large. But this again begs the question: do larger

and more complex HRG models result in improved performance?

To answer this question we computed the GCD distance between the original

graph and graphs generated by varying k and s. Figure 4.17 in chapter 4 illustrates

the relationship between model size and the GCD. We use the Router and DBLP

graphs to shows the largest and smallest of our dataset; other graphs show similar

results, but their plots are omitted due to of space. Surprisingly, we find that the

performance of models with only 100 rules is similar to the performance of the largest

models. In the Router results, two very small models with poor performance had only

18 and 20 rules each. Best fit lines are drawn to illustrate the axes relationship where

negative slope indicates that larger models generally perform better. Outliers can
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dramatically affect the outcome of best fit lines, so the faint line in the Routers

graph shows the best fit line if we remove the two square outlier points. Without

removing outliers, we find only a slightly negative slope on the best fit line indicating

only a slight performance improvement between HRG models with 100 rules and HRG

models with 1,000 rules. Pearson’s correlation coefficient comparing GCD and model

size similarly show slightly negative correlations on Routers (r = −0.12, p = 0.49),

Enron (r = −0.09, p = 0.21), ArXiv (r = 0.04, p = 0.54), and DBLP (r = −0.08,

p = 0.62)

3.5.5.2 Runtime Analysis Revisited

The overall execution time of the HRG model is best viewed in two parts: (1)

rule extraction, and (2) graph generation.

We previously identified the runtime complexity of the rule extraction process to

be O(m ·∆). However, this did not include k samples of size-s subgraphs. So, when

sampling with k and s, we amend the runtime complexity to be O(k ·m ·∆) where m

is bounded by the number of hyperedges in the size-s subgraph sample and ∆ ≤ s.

Graph generation requires a straightforward application of rules and is linear in the

number of edges in the output graph.

All experiments were performed on a modern consumer-grade laptop in an un-

optimized, unthreaded python implementation. We recorded the extraction time

while generating graphs for the size-to-GCD comparison in the previous section. Al-

though the runtime analysis gives theoretical upper bounds to the rule extraction

process, Fig. 4.18 shows that the extraction runtime is highly correlated to the size

of the model in Routers (r = 0.68), ArXiv (r = 0.91), Enron (r = 0.88), and DBLP

(r = 0.94) all with p � 0.001. Simply put, more rules require more time, but there

are diminishing returns. So it may not be necessary to learn complex models when

smaller HRG models tend to perform reasonably well.
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3.5.6 Graph Generation Infinity Mirror

Lastly, we characterize the robustness of graph generators by introducing a new

kind of test we call the infinity mirror [2]. One of the motivating questions behind

this idea was to see if HRG holds sufficient information to be used as a reference itself.

In this test, we repeatedly learn a model from a graph generated by the an earlier

version of the same model. For HRG, this means that we learn a set of production

rules from the original graph H and generate a new graph H∗; then we set H ← H∗

and repeat thereby learning a new model from the generated graph recursively. We

repeat this process ten times, and compare the output of the tenth recurrence with

the original graph using GCD.

We expect to see that all models degenerate over 10 recurrences because graph

generators, like all machine learning models, are lossy compressors of information.

The question is, how quickly do the models degenerate and how bad do the graphs

become?

Figure 4.14 in chapter 4shows the GCD scores for the HRG, Chung-Lu and Kro-

necker models at each recurrence. Surprisingly, we find that HRG stays steady, and

even improves its performance while the Kronecker and Chung-Lu models steadily

decrease their performance as expected. We do not yet know why HRG improves per-

formance in some cases. Because GCD measures the graphlet correlations between

two graphs, the improvement in GCD may be because HRG is implicitly honing in on

rules that generate the necessary graph patterns. Yet again, further work is needed

to study this important phenomenon.

3.6 Conclusions and Future Work

In this paper we have shown how to use clique trees (also known as junction trees,

tree decomposition, intersection trees) constructed from a simple, general graph to
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learn a hyperedge replacement grammar (HRG) for the original graph. We have

shown that the extracted HRG can be used to reconstruct a new graph that is iso-

morphic to the original graph if the clique tree is traversed during reconstruction.

More practically, we show that a stochastic application of the grammar rules creates

new graphs that have very similar properties to the original graph. The results of

graphlet correlation distance experiments, extrapolation and the infinity mirror are

particularly exciting because our results show a stark improvement in performance

over existing graph generators.

In the future, we plan to investigate differences between the grammars extracted

from different types of graphs; we are also interested in exploring the implications of

finding two graphs which have a large overlap in their extracted grammars. Among

the many areas for future work that this study opens, we are particularly interested

in learning a grammar from the actual growth of some dynamic or evolving graph.

Within the computational theory community there has been a renewed interest in

quickly finding clique trees of large real world graphs that are closer to optimal.

Because of the close relationship of HRG and clique trees shown in this paper, any

advancement in clique tree algorithms could directly improve the speed and accuracy

of graph generation.

Perhaps the most important finding that comes from this work is the ability to

interrogate the generation of substructures and subgraphs within the grammar rules

that combine to create a holistic graph. Forward applications of the technology

described in this work may allow us to identify novel patterns analogous to the

previously discovered triadic closure and bridge patterns found in real world social

networks. Thus, an investigation in to the nature of the extracted rules and their

meaning (if any) is a top priority.

We encourage the community to explore further work bringing HRGs to attributed

graphs, heterogeneous graphs and developing practical applications of the extracted
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rules. Given the current limitation related to the growth in the number of extracted

rules as well as the encouraging results from small models, we are also looking for

sparsification techniques that might limit the model’s size while still maintaining

performance.
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CHAPTER 4

PROBABILISTIC GRAPH GENERATION

4.1 Introduction

Teasing out signatures of interactions buried in overwhelming volumes of infor-

mation is one of the most basic challenges in scientific research. Understanding how

information is organized and how it evolves can help us discover its fundamental

underlying properties. Researchers do this when they investigate the relationships

between diseases, cell functions, chemicals, or particles, and we all learn new concepts

and solve problems by understanding the relationships between the various entities

present in our everyday lives. These entities can be represented as networks, or

graphs, in which local behaviors can be understood, but whose global view is highly

complex.

Discovering and analyzing network patterns to extract useful and interesting pat-

terns (building blocks) is critical to the advancement of many scientific fields. Indeed

the most pivotal moments in the development of a scientific field are centered on

discoveries about the structure of some phenomena [59]. For example, biologists

have agreed that tree structures are useful when organizing the evolutionary his-

tory of life [22, 51], and sociologists find that triadic closure underlies community

development [26, 39]. In other instances, the structural organization of the entities

may resemble a ring, a clique, a star, a constellation, or any number of complex

configurations.

Unfortunately, current graph mining research deals with small pre-defined pat-

terns [54, 75] or frequently reoccurring patterns [44, 50, 60, 62], even though inter-

40



esting and useful information may be hidden in unknown and non-frequent patterns.

Principled strategies for extracting these complex patterns are needed to discover the

precise mechanisms that govern network structure and growth. In-depth examina-

tion of this mechanism leads to a better understanding of graph patterns involved

in structural, topological, and functional properties of complex systems. This is pre-

cisely the focus of the present work: to develop and evaluate techniques that learn

the building blocks of real-world systems that, in aggregate, succinctly describe the

observed interactions expressed in a network.

These networks exhibit a long and varied list of global properties, including heavy-

tailed degree distributions [104], and interesting community structures [99] to name

a few. Recent work has found that these global properties are products of a graph’s

local properties [91, 109].

Stochastic graph generation exposed a computational vulnerability in the initial

design. A new approach to how graph generation addresses the issue using concepts

in probabilistic context-free grammars. We validate, and test and our experiments

to show that we can consistently yield graphs of fixed-size. In the present work, our

goal is to learn the local structures that, in aggregate, help describe the interactions

observed in the network and generalize to applications across a variety of fields like

computer vision, computational biology, and graph compression.

The key insight for this task is that a network’s clique tree encodes robust and

precise information about the network. A hyperedge replacement grammar (HRG),

extracted from the clique tree, contains graphical rewriting rules that can match

and replace graph fragments similar to how a context-free grammar (CFG) rewrites

characters in a string. These graph fragments represent a succinct, yet complete

description of the building blocks of the network, and the rewriting rules of the HRG

describe the instructions on how the graph is pieced together.

The HRG framework is divided into two steps: 1) graph model learning and 2)
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graph generation. After reviewing some of the theoretical foundations of clique trees

and HRGs, we show how to extract an HRG from a graph. These graph rewriting rules

can be applied randomly to generate larger and larger graphs. However, scientists

typically have a specific size in mind, so we introduce a fixed-size graph generation

algorithm that will apply HRG rules to generate a realistic graph of a user-specified

size.

Finally, we present experimental results that compare the generated graphs with

the original graphs. We show that these generated structures exhibit a broad range of

properties that are very similar to the properties of the reference (original) networks

and outperform existing graph models across a variety of graph comparison metrics.

Preliminary concepts providing an auxiliary set of definitions is mentioned the

previous chapter under section 3.2. In that section we define some concepts in detail.

4.2 Learning HRGs

The first step in learning an HRG from a graph is to compute a clique tree

from the original graph. Then, this clique-tree directly induces an HRG, which we

demonstrate in this section.

Vη

Vη1 Vη3Vη2
⇒

Vη

Vη1 Vη′

Vη2 Vη3

Figure 4.1. Binarization of a bag in a clique tree.
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4.2.1 Binarization

Just as context-free string grammars are more convenient to parse if put into

Chomsky normal form (CNF), we also assume, without loss of generality, that our

HRG also follows CNF. This means that each rule’s right-hand side has at most two

nonterminals. By the HRG induction methods presented later in this section, each

clique tree node η yields an HRG rule, and the number of children of η determines the

number of nonterminals on the right-hand side of the resulting rule. Thus, it suffices

for the clique tree to have a branching factor of at most two. Although the branching

factor of a clique tree may be greater than two, it is always easy to binarize it.

There is more than one way to do this; we use the following scheme. Let η

be a clique tree node with children η1, . . . , ηd, where d > 2 (here d corresponds

to the number of children for a given parent node). These are labeled with bags

Vη, Vη1 , . . . , Vηd , respectively. Make a copy of η; call it η′, and let Vη′ = Vη. Let the

children of η be η1 and η′, and let the children of η′ be η2, . . . , ηr. See Fig. 4.1 for an

example. Then, if η′ has more than two children, apply this procedure recursively to

η′.

It is easy to see that this procedure terminates and results in a clique tree whose

nodes are at most binary-branching and still has the vertex cover, edge cover, and

running intersection properties for H.

4.2.2 Clique Tree Pruning

Later we will introduce a dynamic programming algorithm for constructing graphs

that require every leaf node of the clique tree to have at least one internal vertex.

Clique tree algorithms, such as the MCS algorithm used in this paper, do no guarantee

these conditions. Fortunately, we can just remove these leaf nodes from the clique

tree.

The bottom-right clique tree node in Fig. 3.1 is such an example because f is an
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f

⇒

c d

e

b

c d

e

a b

e

d

e f

e f

Figure 4.2. Pruning a clique tree to remove leaf nodes without internal
vertices. Ghosted clique tree nodes show nodes that are pruned.

external vertex; that is, f exists in its parent. Because no internal vertices exist in

this leaf node, it is removed from the clique tree. The clique tree node with vertices

e and f is now a leaf, as illustrated in the left side of Fig. 4.2. Vertices e and f in the

new leaf node are still both external vertices, so this clique tree node must also be

removed creating a final clique tree illustrated in the right side of Fig. 4.2.

4.2.3 Clique Trees and HRGs

Here we show how to extract an HRG from the clique tree. Let η be an interior

node of the clique tree CT , let η′ be its parent, and let η1, . . . , ηm be its children. Node

η corresponds to an HRG production rule A→ R as follows. First, |A| = |Vη′ ∩ Vη|.

Then, R is formed by:

• Adding an isomorphic copy of the vertices in Vη and the edges in Eη

• Marking the (copies of) vertices in Vη′ ∩ Vη as external vertices

• Adding, for each ηi, a nonterminal hyperedge connecting the (copies of) vertices
in Vη ∩ Vηi .

Figure 4.3 shows an example of the creation of an HRG rule. In this example, we

focus on the middle clique-tree node Vη = {b, c, d, e}, outlined in bold.
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5

4
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5 6

a b
N

Rule

a

b x

T1

T2

N

1 2

3 4

5 6

T1

T2

a

b

n1 n2

n1 n2

Clique Tree (subtree) LHS RHS Original Graph

Figure 4.3. Example of hyperedge replacement grammar rule creation from
an interior vertex of the clique tree. Note that lowercase letters inside

vertices are for explanatory purposes only; only the numeric labels outside
external vertices are actually part of the rule.

We choose nonterminal symbol N for the LHS, which must have rank 3 because

η has 3 vertices in common with its parent. The RHS is a graph whose vertices are

(copies of) Vη = {b, c, d, e}. Vertices c, d and e are marked external (and numbered

1, 2, and 3, arbitrarily) because they also appear in the parent node. The terminal

edges are Eη = {(b, c), (b, d)}. There is only one child of η, and the nodes they have

in common are b and e, so there is one nonterminal hyperedge connecting b and e.

Next we deal with the special cases of the root and leaves.

3 4

5

4

5 6

2

3 4

5

S
Rule

N

yx

z

T1T2

N

1 2

3 4

5 6

T1T2

n1

n2n3

n4

n5 n1

n2

n3 n4

n5

Clique Tree (subtree) LHS RHS Original Graph

Figure 4.4. Example of hyperedge replacement grammar rule creation from
the root node of the clique tree.
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Root Node. If η is the root node, then it does not have any parent cliques, but

may still have one or more children. Because η has no parent, the corresponding rule

has a LHS with rank 0 and a RHS with no external vertices. In this case, we use the

start nonterminal symbol S as the LHS, as shown in Fig. 4.4.

The RHS is computed in the same way as the interior node case. For the example

in Fig. 4.4, the RHS has vertices that are copies of c, d, and e. In addition, the

RHS has two terminal hyperedges, Eη = {(c, d), (c, e)}. The root node has two

children, so there are two nonterminal hyperedges on the RHS. The right child has

two vertices in common with η, namely, d and e; so the corresponding vertices in the

RHS are attached by a 2-ary nonterminal hyperedge. The left child has three vertices

in common with η, namely, c, d, and e, so the corresponding vertices in the RHS are

attached by a 3-ary nonterminal hyperedge.

2

3 4

5

1

5

2

a b
N

a b

Rule

a

b

x T1

T2

1 2

3 4

5 6

T1

T2

Clique Tree (subtree) LHS RHS Original Graph

Figure 4.5. Example of hyperedge replacement grammar rule creation from
a leaf vertex of the clique tree.

Leaf Node. If η is a leaf node, then the LHS is calculated the same as in the

interior node case. Again we return to the running example in Fig. 4.5. Here, we

focus on the leaf node {a, b, e}, outlined in bold. The LHS has rank 2, because η has
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two vertices in common with its parent.

The RHS is computed in the same way as the interior node case, except no

new nonterminal hyperedges are added to the RHS. The vertices of the RHS are

(copies of) the nodes in η, namely, a, b, and e. Vertices b and e are external be-

cause they also appear in the parent clique. This RHS has two terminal hyperedges,

Eη = {(a, b), (a, e)}. Because the leaf clique has no children, it cannot produce any

nonterminal hyperedges on the RHS; therefore this rule is a terminal rule.

4.2.4 Top-Down HRG Rule Induction

We induce production rules from the clique tree by applying the above extraction

method top down. Because trees are acyclic, the traversal order does not matter, yet

there are some interesting observations we can make about traversals of moderately

sized graphs. First, exactly one HRG rule will have the special starting nonterminal

S on its LHS; no mention of S will ever appear in any RHS. Similarly, the number

of terminal rules is equal to the number of leaf nodes in the clique tree.

Larger graphs will typically produce larger clique trees, especially sparse graphs

because they are more likely to have a greater number of small maximal cliques.

These larger clique trees will produce a large number of HRG rules, one for each

clique in the clique tree. Although it is possible to keep track of each rule and its

traversal order, we find, and will later show in the experiments section, that the same

rules often repeat many times.

Figure 4.6 shows the 4 rules that are induced from the clique tree illustrated in

Fig. 3.1 and used in the running example throughout this section.

4.3 Graph Generation

In this section, we show how to use the HRG extracted from the original graph H

(as described in the previous section) to generate a new graph H∗. Ideally, H∗ will
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Figure 4.6. Complete set of production rules extracted from the example
clique tree. Note that lowercase letters inside vertices are for explanatory

purposes only; only the numeric labels outside external vertices are part of
the rule.

be similar to or have features that are akin or analogous to the original graph H. We

present two generation algorithms. The first generates random graphs with similar

characteristics to the original graph. The second is like it but generates random

graphs that have a specified number of nodes.

4.3.1 Stochastic Generation

There are many cases in which we prefer to create very large graphs in an efficient

manner that still exhibit the local and global properties of some given example graph.

Here we describe a simple stochastic hypergraph generator that applies rules from

the extracted HRG to efficiently create such graphs.

In larger HRGs we usually find many A→ R production rules that are identical.

We chose to consider rules that are identical modulo a permutation of their external

vertices to be equivalent as well. We can merge these duplicates by matching rule-

signatures in a dictionary and keep a count of the number of times that each distinct
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rule has been seen. For example, if there were some extra Rule #5 in Fig. 4.6 that

was identical to, say, Rule #3, then we would simply note that we saw Rule #3 two

times.

To generate random graphs from a probabilistic HRG (PHRG), we start with the

special starting nonterminal H ′ = S. From this point, H∗ can be generated as follows:

(1) Pick any nonterminal A in H ′; (2) Find the set of rules (A→ R) associated with

LHS A; (3) Randomly choose one of these rules with probability proportional to its

count; (4) Choose an ordering of its external vertices with uniform probability; (5)

Replace A in H ′ with R to create H∗; (5) Replace H ′ with H∗ and repeat until there

are no more nonterminal edges.

4.3.2 Fixed-Size Generation

A problem we find with the stochastic generation procedure is that, although the

generated graphs have the same mean size as the original graph, the variance is much

too high to be useful. So we want to sample only graphs whose size is the same as

the original graph’s, or some other user-specified size. Naively, we can do this using

rejection sampling: sample a graph, and if the size is not right, reject the sample and

try again. However, this would be quite slow. Our implementation uses a dynamic

programming approach to sample a graph with specified size, while using quadratic

time and linear space, or approximately while using linear time and space.

More formally, the learned PHRG defines a probability distribution over graphs,

P (H∗). But rather than sampling from P (H∗), we want to sample from P (H∗ |

|H∗| = n), where n is the desired size.

Here, the stochastic generation sampling procedure is modified to rule out all

graphs of the wrong size, as follows. Define a sized nonterminal X(`) to be a nonter-

minal X together with a size ` > 0. If n is the desired final size, we start with S(n),

and repeatedly:
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1. Choose an arbitrary edge labeled with a sized nonterminal (call it X(`)).

2. Choose a rule from among all rules with LHS X.

3. Choose sizes for all the nonterminals in the rule’s RHS such that the total size of
the RHS is `.

4. Choose an ordering of the external vertices of the rule’s RHS, with uniform prob-
ability.

5. Apply the rule.

A complication arises when choosing the rule and the RHS nonterminal sizes (steps

2 and 3) because the weights of these choices no longer form a probability distribution.

Removing graphs with the wrong size causes the probability distribution over graphs

to sum to less than one, and it must be renormalized [81]. To do this, we precompute

a table of inside probabilities α[X, `] for ` = 1, . . . , n, each of which is the total weight

of derivations starting with X and yielding a (sub)graph of size exactly `. These are

computed using dynamic programming, as shown in Algorithm 1.

If X → R is a HRG rule, define size(R) to be the increase in the size of a graph

upon application of rule (X → R). If size is measured in vertices, then size(R) is the

number of internal vertices in R.

Rules that are unary and have zero size require some special care because they do

not change the size of the graph. If there is a unary size-zero rule X → Y , we need

to ensure that α[Y, `] is computed before α[X, `], or else the latter will be incorrect.

Thus, in Algorithm 1, we start by forming a weighted directed graph U whose nodes

are all the nonterminals in N , and for every unary rule X
p−→ Y , there is an edge

from X to Y with weight p. We perform a topological sort on U , and the loop over

nonterminals X ∈ N is done in reverse topological order.

However, if U has a cycle, then no such ordering exists. The cycle could apply

an unbounded number of times, and we need to sum over all possibilities. Algo-

rithm 2 handles this more general case [103]. We precompute the strongly con-

nected components of U , for example, using Tarjan’s algorithm, and for each com-
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compute digraph U of unary size-zero rules;
topologically sort U ;
assert (U is acyclic);
for `← 1, . . . , n do

for X ∈ N in reverse topological order do

for rules X
p−→ R do

`′ = `− size(R);
if R has no nonterminals and `′ = 0 then

α[X, `] += p;
end
else if R has nonterminal Y then

α[X, `] += p× α[Y, `′];
end
else if R has nonterminals Y and Z then

for k ← 1, . . . , `′ − 1 do
α[X, `] += p× α[Y, k]× α[Z, `′ − k];

end

end

end

end

end
Algorithm 1: Compute inside probabilities (no cycles of size-zero unary rules)

ponent C, we form the weighted adjacency matrix of C; call this UC . The matrix

U∗C =
∑∞

i=0 U
i
C = (I−UC)−1 gives the total weight of all chains of unary rules within

C. So, after computing all the α[X, `] for X ∈ C, we apply the unary rules by treat-

ing the α[X, `] (for X ∈ C) as a vector and left-multiplying it by U∗C . Some tricks

are needed for numerical stability; for details, please see the released source code at

https://github.com/nddsg/PHRG/.

In principle, a similar problem could arise with binary rules. Consider a rule

X → R where R is zero-size and has two nonterminals, Y and Z. If α[Y, 0] > 0, then

α[X, `] is defined in terms of α[Y, `], which could lead to a circularity. Fortunately,

we can avoid such situations easily. Recall that after clique tree pruning (Sec. 4.2.2),

every leaf of the clique tree has at least one internal vertex. In terms of HRG rules,

this means that if R has no nonterminals, then size(R) > 0. Therefore, we have
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compute weighted digraph U of unary size-zero rules;
find strongly connected components (scc’s) of U ;
compute U∗C for each scc C;
for `← 1, . . . , n do

for scc’s C in reverse topological order do
for X ∈ C do

for rules X
p−→ R do

`′ = `− size(R);
if R has no nonterminals and `′ = 0 then

α[X, `] += p;
end
else if R has nonterminal Y and `′ < ` then

α[X, `] += p× α[Y, `′];
end
else if R has nonterminals Y and Z then

for k ← 1, . . . , `′ − 1 do
α[X, `] += p× α[Y, k]× α[Z, `′ − k];

end

end

end

end
for X ∈ C do

α[X, `] =
∑

Y ∈C [U∗C ]XY × α[Y, `];
end

end

end
Algorithm 2: Compute inside probabilities (general)

α[X, 0] = 0 for all X, and no problem arises.

Once we have computed α, we can easily sample a graph of size n using Algo-

rithm 3. Initially, we start with the sized start nonterminal S(n). Then, we repeatedly

choose an edge labeled with a sized nonterminal X(`), use the table α of inside prob-

abilities to recompute the weight of all the rewriting choices quickly, sample one of

them, and apply it.
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H ← S(n);

while H contains a nonterminal X(`) do

for all rules X
p−→ R do

`′ = `− size(R);
if R has no nonterminals and `′ = 0 then

weight[R] = p;
end
else if R has nonterminal Y then

R′ = R{Y 7→ Y (`′)};
weight[R′] = p× α[Y, `′];

end
else if R has nonterminals Y and Z then

for k ← 1, . . . , `′ − 1 do
R′ = R{Y 7→ Y (k), Z 7→ Z(`′−k)};
weight[R′] = p× α[Y, k]× α[Z, `′ − k];

end

end

end
let P (R) = weight[R]/

∑
R′ weight[R′];

sample sized RHS R from P (R);
choose ordering of the external vertices of R;

H ← H{X(`) 7→ R};
end

Algorithm 3: Generate a graph with n nodes

4.3.3 Pruning inside probabilities

The slowest step in the above method is the precomputation of inside probabilities

(Alg. 2), which is quadratic in the number of vertices. To speed up this step up, we

observe that randomly generated graphs tend to be highly unbalanced in the sense

that if a rule has two nonterminal symbols, one is usually much larger than the other

(see Figure 4.7). This is related to the fact, familiar with the study of algorithms,

that random binary search trees tend to be highly unbalanced [98].

Therefore, we can modify Algorithm 2 to consider only splits where at most (say)

1000 nodes go to one nonterminal and the rest of the nodes go the other. This makes

the algorithm asymptotically linear.
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Figure 4.7. When an HRG rule has two nonterminal symbols, one is
overwhelmingly likely to be much larger than the other. This plot shows,
for various grammar rules (one LHS per row, one RHS per colored line),
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nonterminal symbols. This plot is best viewed in color.

54



4.4 Experiments

Here we show that HRGs contain rules that succinctly represent the global and

local structure of the original graph. In this section, we compare our approach against

some of the state-of-the-art graph generators. We consider the properties that char-

acterize some real-world networks and compare the distribution of graphs generated

using Kronecker Graphs, the Exponential Random Graph, Chung-Lu Graphs, and

the graphs produced by the probabilistic hyperedge replacement graph grammar.

Like HRGs, the Kronecker and Exponential Random Graph Models learn param-

eters that can be used to approximately recreate the original graph H or a graph

of some other size such that the probabilistically generated graph holds many of the

same properties as the original graph. The Chung-Lu graph model relies on node de-

gree sequences to yield graphs that maintain this distribution. The probabilistically

generated graphs are likely not isomorphic to the original graph. We can, however,

still judge how closely the probabilistically generated graph resembles the original

graph by comparing several of their properties.

4.4.1 real-world Datasets

To get a holistic and varied view of the strengths and weaknesses of HRGs in

comparison to the other leading graph generation models, we consider real-world

networks that exhibit properties that are both common to many networks across

different fields, but also have certain distinctive properties.

The six real-world networks considered in this paper are described in Table 4.1.

The networks vary in their number of vertices and edges as indicated, but also vary in

clustering coefficient, diameter, degree distribution and many other graph properties.

Specifically, Karate Club graph is a network of interactions between members of a

karate club; the Protein network is a protein-protein interaction network of S. cere-
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TABLE 4.1

Experimental Dataset

Dataset Name Nodes Edges

Karate Club 34 78

Proteins (metabolic) 1,870 2,277

arXiv GR-QC 5,242 14,496

Internet Routers 6,474 13,895

Enron Emails 36,692 183,831

DBLP 317,080 1,049,866

Amazon 400,727 2,349,869

Flickr 105,938 2,316,948

visiae yeast; the Enron graph is the email correspondence graph of the now defunct

Enron corporation; the arXiv GR-QC graph is the co-authorship graph extracted

from the General Relativity and Quantum Cosmology section of arXiv; the Inter-

net router graph is created from traffic flows through Internet peers; DBLP is the

co-authorship graph from the DBLP dataset; Amazon is the co-purchasing network

from March 12, 2003; and, finally, Flickr is a network created from photos taken at

the same location.

In the following experiments, we use the larger networks (arXiv, Routers, Enron,

DBLP, Amazon, Flickr) for network generation and the smaller networks (Karate,

Protein) for a special graph extrapolation task. Datasets were downloaded from the

SNAP and KONECT dataset repositories.
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4.4.2 Methodology

We compare several different graph properties from the four classes of graph

generators (fixed-size HRG, Kronecker, Chung-Lu and exponential random graph

(ERGM) models) to the original graph H. Other models, such as the Erdős-Rényi

random graph model, the Watts-Strogatz small world model, the Barabási-Albert

generator, etc. are not compared here because Kronecker, Chung-Lu and ERGM have

been shown to outperform these earlier models when matching network properties in

empirical networks.

Kronecker graphs operate by learning an initiator matrix and then performing a

recursive multiplication of that initiator matrix to create an adjacency matrix of the

approximate graph. In our case, we use KronFit [73] with default parameters to learn

a 2×2 initiator matrix and then use the recursive Kronecker product to generate the

graph. Unfortunately, the Kronecker product only creates graphs where the number

of nodes is a power of 2, i.e., 2x, where we chose x = 15, x = 12, x = 13, and x = 18

for Enron, ArXiv, Routers and DBLP graphs respectively to match the number of

nodes as close as possible.

The Chung-Lu Graph Model takes, as input, a degree distribution and generates

a new graph of the similar degree distribution and size [19].

Exponential Random Graph Models are a class of probabilistic models. Their

usefulness lies in that they directly describe several structural features of a graph [94].

We used default parameters in R’s ERGM package [47] to generate graph models for

comparison. In addition to the problem of model degeneracy, ERGMs do not scale

well to large graphs. As a result, DBLP, Enron, Amazon, and Flickr could not be

modelled due to their size, and the arXiv graph always resulted in a degenerate

model. Therefore ERGM results are omitted from this section.

The main strength of HRG is to learn the patterns and rules that generate a

large graph from only a few small subgraph-samples of the original graph. So, in
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all experiments, we make k random samples of size s node-induced subgraphs by a

breadth first traversal starting from a random node in the graph [67]. By default we

set k = 4 and s = 500 empirically. We then compute tree decompositions from the k

samples, learn HRGs G1, G2, . . . , Gk, and combine them to create a single grammar

G =
⋃
iGi.

Unless otherwise noted, we generate 20 graphs each for the HRG, Chung-Lu, and

Kronecker models and plot the mean values in the results section. We did compute

the confidence intervals for each of the models but omitted them from the graphs

for clarity. In general, the confidence intervals were small for HRG, Kronecker, and

Chung-Lu.

4.4.3 Graph Generation Results

Here we compare and contrast the results of approximate graphs generated from

the HRG, Kronecker, and Chung-Lu models. Before presenting each result, we briefly

introduce the graph properties that we used to compare the similarity between the

real networks and their approximate counterparts. Although many properties have

been discovered and detailed in related literature, we focus on five of the principal

properties from which most others can be derived.

4.4.3.1 Global Measures

A key goal of graph modelling to preserve certain network properties of the origi-

nal graph (i.e., H as introduced in 3.2). Graphs generated using HRG, Kronecker, or

Chung-Lu are analyzed by studying their fundamental network properties to assess

how successful the model performs in generating graphs from parameters and pro-

duction rules learned from the input graph. First, we look at the degree distribution,

eigenvector centrality, local clustering coefficient, hop plot, and assortative mixing

characteristics, and draw conclusions on these results.
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Figure 4.8. Degree Distribution. Dataset graphs exhibit a power law degree
distribution that is well captured by existing graph generators as well as

HRG.

Degree Distribution. The degree distribution of a graph is the distribution of

the number of edges connecting to a particular vertex. Figure 4.8 shows the results of

the degree distribution property on the six real-world graphs. Recall that the graph

results plotted here and throughout the results section are the mean averages of 20

generated graphs. Each of the generated graphs is slightly different from the original

graphs in their own way. As expected, we find that the power law degree distribution

is captured by existing graph generators as well as the HRG model.

Eigenvector Centrality. The principal eigenvector is often associated with the

centrality or “value” of each vertex in the network, where high values indicate an

important or central vertex and lower values indicate the opposite. A skewed distri-

bution points to a relatively few “celebrity” vertices and many common nodes.

The principal eigenvector value for each vertex is also closely associated with the

PageRank and degree value for each node. Figure 4.9 shows the eigenvector scores
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Figure 4.9. Eigenvector Centrality. Nodes are ordered by their
eigenvector-values along the x-axis. Cosine distance between the original

graph and HRG, Chung-Lu and Kronecker models are shown at the top of
each plot where lower is better. In terms of cosine distance, the eigenvector

of HRG is consistently closest to that of the original graph.

for each node ranked highest to lowest in each of the six real-world graphs. Because

the x-axis represents individual nodes, Fig. 4.9 also shows the size difference among

the generated graphs. HRG performs consistently well across all graphs, but the log

scaling on the y-axis makes this plot difficult to discern. To more concretely compare

the eigenvectors, the pairwise cosine distance between eigenvector centrality of H

and the mean eigenvector centrality of each model’s generated graphs appear at the

top of each plot in order. HRG consistently has the lowest cosine distance followed

by Chung-Lu and Kronecker.

Hop Plot. The hop-plot of a graph shows the number of vertex-pairs that are

reachable within x hops. The hop-plot, therefore, is another way to view how

60



0 5 10 15

0

0.5

1

R
ea

ch
a
b

le
P

ai
rs

Routers

0 5 10

0

0.5

1

Enron

0 5 10 15

0

0.5

1

Arxiv

0 10 20

0

0.5

1

Hops

R
ea

ch
a
b

le
P

ai
rs

DBLP

0 5 10 15

0

100K

200K

Hops

Amazon

0 5 10
0

40K

80K

Hops

Flickr

H HRG Chung-Lu Kronecker

Figure 4.10. Hop Plot. Number of vertex pairs that are reachable within
x-hops. HRG closely and consistently resembles the hop plot curves of the

original graph.

quickly a vertex’s neighborhood grows as the number of hops increases. As in re-

lated work [71] we generate a hop-plot by picking 50 random nodes and performing

a complete breadth first traversal over each graph. Figure 4.10 demonstrates that

HRG graphs produce hop-plots that are remarkably similar to the original graph.

Mean Clustering Coefficients. A vertex’s clustering coefficient is a measure

of how well connected its neighbors are [112]. For each vertex in the graph, its

clustering coefficient is the ratio of the number of edges in its ego-network (i.e., local

neighborhood) to the total number of possible edges that could exist if the vertex’s

neighborhood was a clique. Calculating the clustering coefficient for each node is

a computationally difficult task and difficult plot aesthetically, so we sampled 100

nodes from the graph randomly. Figure 4.11 shows the average clustering coefficients

for the sampled nodes as a function of its degree in the graph. Like the results from
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Figure 4.11. Mean Clustering Coefficient by Node Degree. HRG closely
and consistently resembles the clustering coefficients of the original graph.

Seshadhri et al., we find that the Kronecker and Chung-Lu models perform poorly

at this task [99].

Local Degree Assortativity. The global degree assortativity of a graph measures

its tendency to have high-degree vertices connect to high-degree vertices and vice

versa measured as a Pearson correlation coefficient. The local degree assortativity is

measured for each vertex as the amount that each vertex contributes to the overall

correlation, i.e., how different the vertex is from its neighbors. Figure 4.12 shows the

degree assortativity for each vertex from each generated graph.

The last three graph metrics, k-core, local clustering coefficient, and local degree

assortativity, all showed a relatively poor performance of the Chung-Lu and Kro-

necker graph generators. HRG modelled the k-core and local clustering coefficients

rather well but had inconsistent results in the local degree assortativity plots.
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Figure 4.12. Local Degree Assortativity. HRG, Chung-Lu, and Kronecker
graphs show mixed results with no clear winner.

4.4.4 Canonical Graph Comparison

The previous network properties primarily focus on statistics of the global net-

work. However, there is mounting evidence which argues that the graphlet compar-

isons are a complete way to measure the similarity between two graphs [91, 109].

The graphlet distribution succinctly describes the number of small, local substruc-

tures that compose the overall graph and therefore more completely represents the

details of what a graph “looks like.” Furthermore, it is possible for two very dissim-

ilar graphs to have the same degree distributions, hop plots, etc., but it is difficult

for two dissimilar graphs to fool a comparison with the graphlet distribution.

Table 4.2 shows the mean graphlet counts over 10 runs for each graph generator.

We find that graphlet counts for the graphs generated by HRG follow the original

counts more closely, and in many cases much more closely, than the Kronecker and

Chung-Lu graphs.
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TABLE 4.2: Graphlet Statistics and Graphlet Correlation Distance (GCD) for six
real-world graphs. First row of each section shows the original graph’s graphlet
counts, remaining row shows mean counts of 10 runs for each graph generator. We
find that the HRG model generates graphs that closely approximate the graphlet
counts of the original graph.

Graphs GCD

Routers 13511 1397413 9863 304478 6266541 177475 194533149 18615590
HRG 13928 1387388 9997 288664 6223500 174787 208588200 18398430 1.41
Kronecker 144 61406 0 80 10676 973 642676 551496 2.81
Chung-Lu 4787 356897 6268 81403 1651445 13116 35296782 4992714 2.00

Enron 727044 23385761 2341639 22478442 375691411 6758870 4479591993 1371828K
HRG 79131 4430783 49355 554240 13123350 556760 688165900 54040090 0.51
Kronecker 2598 5745412 1 1011 608566 49869 1.89468000 141065K 2.88
Chung-Lu 322352 23590260 1191770 16267140 342570000 10195620 3967912K 2170161K 1.33

arXiv 89287 558179 320385 635143 4686232 382032 11898620 7947374
HRG 88108 606999 320039 656554 5200392 455516 15691941 9162859 1.10
Kronecker 436 224916 1 293 47239 4277 3280822 2993351 2.10
Chung-Lu 927 232276 6 967 87868 11395 2503333 3936998 1.82

DBLP 2224385 15107734 16713192 4764685 96615211 203394 258570802 25244735
HRG 1271520 7036423 1809570 2716225 26536420 296801 71099374 28744359 1.59
Kronecker 869 21456020 0 25 150377 11568 517370300 367981K 2.82
Chung-Lu 1718 22816460 740 91 306993 27856 453408500 495492K 1.73

Amazon 5426197 81876562 4202503 39339842 306482275 10982173K 11224584 1511382K
HRG 4558006 90882984 3782253 35405858 275834K 12519677K 10326617 1556723K –
Kronecker 11265 118261600 40 1646 4548699 350162 6671637K 4752968K –
Chung-Lu 4535 71288780 21 6376 5874750 95323 11008170K 2134629K –

Flickr 24553 3754965 1612 38327 2547637 63476 197979760 30734524
HRG 24125 4648108 1600 39582 3130621 68739 409838400 41498780 –
Kronecker 679294 494779400 16068 4503724 951038K 78799K 96664230K 76331M –
Chung-Lu 7059002 787155400 5003082 313863800 12826040K 1513807K 168423M 247999M –

Graphlet Correlation Distance Recent work from systems biology has identi-

fied a new metric called the Graphlet Correlation Distance (GCD). The GCD com-

putes the distance between two graphlet correlation matrices – one matrix for each

graph [113]. It measures the frequency of the various graphlets present in each graph,

i.e., the number of edges, wedges, triangles, squares, 4-cliques, etc., and compares the

graphlet frequencies of each node across two graphs. Because the GCD is a distance

metric, lower values are better. The GCD can range from [0,+∞], where the GCD

is 0 if the two graphs are isomorphic.

The rightmost column in Tab. 4.2 shows the GCD results. Unfortunately, the

node-by-node graphlet enumerator used to calculate the GCD [113] could not pro-
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cess the large Amazon and Flickr graphs, so only the summary graphlet counts are

listed for the two larger graphs [5]. The results here are clear: HRG significantly

outperforms the Chung-Lu and Kronecker models. The GCD opens a whole new line

of network comparison methods that stress the graph generators in various ways. We

explore many of these options next.

4.4.5 Graph Extrapolation

Recall that HRG learns the grammar from k = 4 subgraph-samples from the

original graph. In essence, HRG is extrapolating the learned subgraphs into a full-

size graph. This raises the question: if we only had access to a small subset of some

larger network, could we use our models to infer a larger (or smaller) network with

the same local and global properties? For example, given the 34-node Karate Club

graph, could we infer what a Karate Club might look like if it’s membership doubled?

Using two smaller graphs, Zachary’s Karate Club (34 nodes, 78 edges) and the

protein-protein interaction network of S. cerevisiae yeast (see Table 4.1), we learned

an HRG model with k = 1 and s = n, i.e., no sampling, and generated networks of

size-n∗ = 2x, 3x, . . . , 32x. For the protein graph, we also sampled down to n∗ = x/8.

Powers of 2 were used because the standard Kronecker model can only generate graphs

of that size. The Chung-Lu model requires a size-n∗ degree distribution as input. To

create the proper degree distribution we fitted a Poisson distribution (λ = 2.43) and

a Geometric Distribution (p = 0.29) to Karate and Protein graphs respectively and

drew n∗ degree-samples from their respective distributions. In all cases, we generated

20 graphs at each size-point.

Rather than comparing raw numbers of graphlets, the GCD metric compares

the correlation of the resulting graphlet distributions. As a result, GCD is largely

immune to changes in graph size. Thus, GCD is a good metric for this extrapolation

task. Figure 4.13 shows the mean GCD scores; not only does HRG generate good
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Figure 4.13. GCD of graphs extrapolated in multiples up to 32x from two
small graphs. HRG outperforms Chung-Lu and Kronecker models when

generating larger graphs. Lower is better.

results at n∗ = 1x, the GCD scores remain mostly level as n∗ grows.

4.4.6 Infinity Mirror

Next, we characterize the robustness of graph generators by introducing a new

kind of test we call the infinity mirror.1 One of the motivating questions behind this

idea was to see if HRG holds sufficient information to be used as a reference itself. In

this test, we repeatedly learn a model from a graph generated by an earlier version of

the same model. For HRG, this means that we learn a set of production rules from

the original graph H and generate a new graph H∗; then we set H ← H∗ and repeat

whereby learning a new model from the generated graph recursively. We repeat this

process ten times and compare the output of the 10th recurrence with the original

graph using GCD.

1“Infinity mirror” gets its name from the novelty item with a pair of mirrors, set up to create a
series of smaller and smaller reflections that appear to taper to an infinite distance.
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Figure 4.14. Infinity Mirror: GCD comparison after each recurrence.
Unlike Kronecker and Chung-Lu models, HRG does not degenerate as its

model is applied repeatedly.

We expect to see that all models degenerate over ten recurrences. The question

is, how quickly do the models degenerate and how badly do the graphs become?

Figure 4.14 shows the GCD scores for the HRG, Chung-Lu and Kronecker models

at each recurrence (we have also validated the Infinity Mirror tests with other varia-

tions to the Chung-Lu model including the Block Two-Level Erdős-Rényi Model with

similar results [3]). Surprisingly, we find that HRG stays steady, and even improves

its performance while the Kronecker and Chung-Lu models steadily decrease their

performance as expected. We do not yet know why HRG improves performance in

some cases. Because GCD measures the graphlet correlations between two graphs,

the improvement in GCD may be because HRG is implicitly homing in on rules that

generate the necessary graph patterns.

4.4.6.1 Infinity Mirror Model Size

The number of production rules derived from a given graph using Fixed-Size

Graph Generation. Fig. 4.15 shows the number of nodes in graphs after 1, 5, and 10

feedback iterations. The trend for each input graph varies slightly, but in general the

model-size (i.e., the number of production rules derived) stays flat.
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4.4.7 Sampling and Grammar Complexity

We have shown that HRG can generate graphs that match the original graph from

k = 4 samples of s = 500-node subgraphs. If we adjust the size of the subgraph,

then the size of the clique tree will change causing the grammar to change in size

and complexity. A large clique tree ought to create more rules and a more complex

grammar, resulting in a larger model size and better performance; while a small clique

tree ought to create fewer rules and a less complex grammar, resulting in a smaller

model size and a lower performance.

To test this hypothesis, we generated graphs by varying the number of subgraph

samples k from 1 to 32, while also varying the size of the sampled subgraph s from 100

to 600 nodes. Again, we generated 20 graphs for each parameter setting. Figure 4.16

shows how the model size grows as the sampling procedure changes on the Internet

Routers graph. Plots for other graphs show a similar growth rate and shape but are

omitted due to space constraints.

To test the statistical correlation we calculated Pearson’s correlation coefficient

between the model size and sampling parameters. We find that the k is slightly

correlated with the model size on Routers (r = 0.31, p = 0.07), Enron (r = 0.27, p =

0.09), arXiv (r = 0.21, p = 0.11), and DBLP (r = 0.29, p = 0.09). Furthermore, the
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Figure 4.16. HRG model size as the subgraph size s and the number of
subgraph samples k varies. The model size grows linearly with k and s.

choice of s affects the size of the clique tree from which the grammars are inferred. So

its not surprising that s is highly correlated with the model size on Routers (r = 0.64),

Enron (r = 0.71), arXiv (r = 0.68), and DBLP (r = 0.54) all with p� 0.001.

Because we merge identical rules when possible, we suspect that the overall growth

of the HRG model follows Heaps law [43], i.e., that the model size of a graph can

be predicted from its rules; although we save a more thorough examination of the

grammar rules as a matter for future work.

4.4.7.1 Model size and Performance

One of the disadvantages of the HRG model, as indicated in Fig. 4.16, is that the

model size can grow to be very large. But this again begs the question: do larger

and more complex HRG models result in improved performance?

To answer this question, we computed the GCD distance between the original

graph and graphs generated by varying k and s. Figure 4.17 illustrates the rela-

tionship between model size and the GCD. We use the Router and DBLP graphs
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Figure 4.17. GCD as a function of model size. We find a slightly negative
relationship between model size and performance, but with quickly

diminishing returns. We show best-fit lines and their equations; the shorter
fit line in the Routers plot ignores the square outlier points.

to shows the largest and smaller of our datasets; other graphs show similar results,

but we omit their plots due to space. Surprisingly, we find that the performance of

models with only 100 rules is similar to the performance of the largest models. In

the Router results, two very small models with poor performance had only 18 and 20

rules each. Best fit lines are drawn to illustrate the axes relationship where negative

slope indicates that larger models perform better. Outliers can dramatically affect

the outcome of best-fit lines, so the faint line in the Routers graph shows the best

fit line if we remove the two square outlier points. Without removing outliers, we

find only a slightly negative slope on the best fit line indicating only a slight per-

formance improvement between HRG models with 100 rules and HRG models with

1,000 rules. Pearson’s correlation coefficient comparing GCD and model size simi-

larly show slightly negative correlations on Routers (r = −0.12, p = 0.49), Enron

(r = −0.09, p = 0.21), ArXiv (r = 0.04, p = 0.54), and DBLP (r = −0.08, p = 0.62)

4.4.7.2 Runtime Analysis

The overall execution time of the HRG model is best viewed in two parts: (1)

rule extraction, and (2) graph generation.
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Figure 4.18. Total extraction runtime (i.e., clique tree creation and rule
extraction) as a function of model size. Best fit lines on the log-log plot

show that the execution time grows linearly with the model size.

Unfortunately, finding a clique tree with minimal width i.e., the treewidth tw, is

NP-Complete. Let n and m be the number of vertices and edges respectively in H.

Tarjan and Yannikakis’ Maximum Cardinality Search (MCS) algorithm finds usable

clique trees [107] in linear time O(n+m), but is not guaranteed to be minimal.

The running time of the HRG rule extraction process is determined exclusively by

the size of the clique tree as well as the number of vertices in each clique tree node.

From Defn. 3.2.1 we have that the number of nodes in the clique tree is m. When

minimal, the number of vertices in the largest clique tree node max(|ηi|) (minus 1) is

defined as the treewidth tw. However, clique trees generated by MCS have max(|ηi|)

bounded by the maximum degree of H and is denoted as ∆ [33]. Therefore, given

an elimination ordering from MCS, the computational complexity of the extraction

process is in O(m ·∆). In our experiments, we perform k samples of size-s subgraphs.

So, when sampling with k and s, we amend the runtime complexity to be O(k ·m ·∆)

where m is bounded by the number of hyperedges in the size-s subgraph sample and

∆ ≤ s.

Graph generation requires a straightforward application of rules that is linear in

the number of edges in the output graph.

We performed all experiments on a modern consumer-grade laptop in an un-
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optimized, unthreaded python implementation. We recorded the extraction time

while generating graphs for the size-to-GCD comparison in the previous section. Al-

though the runtime analysis gives theoretical upper bounds to the rule extraction

process, Fig. 4.18 shows that the extraction runtime is highly correlated to the size

of the model in Routers (r = 0.68), arXiv (r = 0.91), Enron (r = 0.88), and DBLP

(r = 0.94) all with p � 0.001. Simply put, more rules require more time, but there

are diminishing returns. So it may not be necessary to learn complex models when

smaller HRG models tend to perform reasonably well.

By comparison, the Kronecker graph generator learns a model in O(m) and can

create a graph in O(m). The Chung-Lu model does not learn a model, but rather

takes, as input, a degree sequence; graph generation is in O(n+m).

4.4.7.3 Graph Guarantees

In earlier work we showed that an application of HRG rules corresponding to a

traversal of the clique tree will generate an isomorphic copy of the original graph [4].

Unlike the Kronecker and Chung-Lu graph generators, which are guaranteed to

generate graph with power-law degree distributions, there are no such guarantees that

can be made about the shape of graphs generated by HRGs. The reason is straight-

forward: the HRG generator is capable of applying rules in any order, therefore, a

wide variety of graphs are possible, although improbable, given an HRG grammar.

But the lack of a formal guarantees give the HRG model flexibility to model

a large variety of graphs. For example, given a line-graph, the HRG model will

generate a new graph that looks, more-or-less, like a line-graph. If given a random

graph, characterized by a binomial degree distribution, then HRG is likely to generate

a new graph with a binomial degree distribution.
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4.5 Conclusions

This paper describes a new generative network framework that learns a hyperedge

replacement grammar (HRG) given a simple, general graph and grows new graphs.

The inference (or model learning) step uses clique trees (also known as junction trees,

tree decomposition, intersection trees) to extract an HRG, which characterizes a set of

production rules. We show that depending on how HRG grammar rules are applied,

during the graph generation step, the resulting graph is isomorphic to the original

graph if the clique tree is traversed during reconstruction. More significantly, we

show that a stochastic application of the HRG grammar rules creates new graphs that

have very similar properties to the original graph. The results of graphlet correlation

distance experiments, extrapolation, and the infinity mirror are particularly exciting

because our results show a stark improvement in performance over several existing

graph generators.

Perhaps the most significant finding that comes from this work is the ability to

interrogate the generation of substructures and subgraphs within the grammar rules

that combine to create a holistic graph. Forward applications of the technology

described in this work may allow us to identify novel patterns analogous to the

previously discovered triadic closure and bridge patterns found in real-world social

networks. Thus, an investigation into the nature of the extracted rules and their

meaning (if any) is a top priority.

In the future, we plan to investigate differences between the grammars extracted

from different types of graphs; we are also interested in exploring the implications of

finding two graphs which have a large overlap in their extracted grammars. Among

the many areas for future work that this study opens, we are particularly interested

in learning a grammar from the actual growth of some dynamic or evolving graph.

Within the computational theory community, there has been a renewed interest in

quickly finding clique trees of large real-world graphs that are closer to optimal.
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Because of the close relationship of HRG and clique trees are shown in this paper,

any advancement in clique tree algorithms could directly improve the speed and

accuracy of graph generation.

We encourage the community to explore further work bringing HRGs to attributed

graphs, heterogeneous graphs and developing practical applications of the extracted

rules. Given the current limitation related to the growth in the number of extracted

rules as well as the encouraging results from small models, we are also looking for

sparsification techniques that might limit the model’s size while still maintaining

performance.
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CHAPTER 5

INFINITY MIRROR TEST FOR ANALYZING GRAPH GENERATORS

5.1 Introduction

Teasing out interesting relationships buried within volumes of data is one of the

most basic challenges in data science research. When this data is viewed as an

information network, the standard approach is to treat the network as a graph with

some number of nodes and edges. Increasingly, researchers and practitioners are

interested in understanding how individual pieces of information are organized and

interact in order to discover the fundamental principles that underlie a physical or

social phenomena.

With this motivation, researchers have developed a suite of graph generation

techniques that learn a model of a network in order to extrapolate, generalize or

otherwise gain a deeper understanding of the data set. Early graph generators like the

Erdős-Rényi, Watts-Strogatz, and Barabasi-Albert models produce random graphs,

small world graphs, and scale free graphs respectively. Although they are used to

generate graphs given some hand-picked parameters, they do not learn a model from

any observed real-world network.

We focus instead on graph model inducers, which take some observed network

G, learn a model Θ and produce a new graph G′. These types of graph generators

include the Kronecker Model, Chung-Lu Model, Exponential Random Graph Model

(ERGM) and Block Two-Level Erdős-Rényi Model (BTER), and others.

The performance of a graph generator can be judged based on how well the new

graph matches certain topological characteristics of the original graph. Unfortunately
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Figure 5.1: Example infinity mirror test on the Kronecker model. This test recursively
learns a model and generates graphs. Although not apparent in G′1, this example
shows a particular type of degeneration where the model loses edges.

small perturbations caused by the implicit and inherent biases of each type of model

may not be immediately visible using existing performance metrics.

In the present work, we address this problem by characterizing the robustness of a

graph generator via a new metric we call the infinity mirror test. The “infinity mirror”

gets its name from the novelty item with a pair of mirrors, set up so as to create a series

of smaller and smaller reflections that appear to taper to an infinite distance. The

motivating question here is to see if a generated graph G′ holds sufficient information

to be used as reference. Although a comparison between G and G′ may show accurate

results, the model’s biases only become apparent after recursive application of the

model onto itself.

The details of the method are discussed later, but, simply put, the infinity mirror

tests the robustness of a graph generator because errors (or biases) in the model are

propagated forward depending on their centrality and severity. A robust graph gen-

erator, without severe biases or errors, should remain stable after several recurrences.

However, a non-robust model will quickly degenerate, and the manner in which the

model degenerates reveals the model-biases that were hidden before.

5.2 Graph Generators

Several graph generators have been developed for the tasks outlined above. We

describe some of them here.
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Kronecker Graph Kronecker graphs operate by learning a 2× 2 initiator matrix

K1 of the form

K1 =

k1 k2

k3 k4


and then performing a recursive multiplication of that initiator matrix in order

to create a probability matrix PKron from which we can stochastically pick edges

to create G′. Because of the recursive multiplication, the Kronecker product only

creates graphs where the number of nodes is an exponential factor of 2, i.e., 2x [73].

The initiator matrix can be learned quickly, and the final graph shares many

similarities with the original graph making the Kronecker graph model a natural fit

for many graph modelling tasks.

Chung-Lu Models The Chung-Lu Graph Model takes, as input, some empirical

(or desired) degree distribution and generates a new graph of the similar degree

distribution and size [17, 18]. An optimized version called Fast Chung-Lu (FCL) was

developed analogous to how the Kronecker model samples its final graph. Suppose

we are given sequences of n-degrees d1, d2, . . . dn where
∑

i di = 2m. We can create

a probability matrix PFCL where the edge eij has a probability didj/m
2 [89].

On average, the Chung-Lu model is shown to preserve the degree distribution of

the input graph. However, on many graphs, the clustering coefficients and assortativ-

ity metrics of the output graphs do not match the original graph. Extensions of the

Chung-Lu (CL) model, such as Transitive CL (TCL) [88], Binning CL (BCL) [79] and

Block Two-Level Erdős-Rényi Model (BTER) [56], have been developed to further

improve performance.

Exponential Random Graph Exponential Random Graph Models (ERGMs)

are a class of probabilistic models used to directly describe several structural features

of a graph [93]. Although ERGMs have been shown to model the degree distributions
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Figure 5.2: Degree distribution. G shown in blue. G′2, G
′
5, G

′
8 and G′10 are shown in

lighter and lighter shades of red. Degeneration is observed when recurrences increas-
ingly deviate from G.

and other graph properties of small graphs, they simply do not scale to graphs of

even moderate size. As a result we cannot include ERGM in the present work.

Existing approaches to graph modelling and generation perform well in certain

instances, but each have their drawbacks. The Kronecker Model, for example, can

only represent graphs with a power law degree distribution. Both Kronecker and the

Chung-Lu models ignore local subnetwork properties, giving rise to more complex

models like Transitive Chung-Lu for better clustering coefficient results [88] or Chung-

Lu with Binning for better assortativity results [79, 80]. Exponential Random Graph

Models (ERGMs) take into consideration the local substructures of a given graph.

However, each substructure in an ERGM must be pre-identified by hand, and the

complexity of the model increases (at least) quadratically as the size of the graph

grows.
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5.3 Infinity Mirror Test

We characterize the robustness of a graph generator by its ability to repeatedly

learn and regenerate the same model. A perfect, lossless model (e.g., Θ = G) would

generate G′ as an isomorphic copy of the original graph. If we were to again apply

the perfect model on the isomorphic G′, we would again generate an isomorphic copy

of the graph. On the other hand, a non-robust graph generator may generate a G′

that is dissimilar from G; if we were to learn a new model from G′ and create a

second-level graph, we would expect this second graph to exacerbate the errors (the

biases) that the first graph made and be even less similar to G. A third, fourth, fifth,

etc. application of the model will cause the initial errors to accumulate and cause

cascading effects in each successive layer.

Colored by this perspective, the robustness of a graph generator is defined by its

ability to maintain its topological properties as it is recursively applied. To that end,

this paper presents the infinity mirror test. In this test, we repeatedly learn a model

from a graph generated by the an earlier version of the same model.

Starting with some real world network G, a graph generator learns a model Θ1

(where the subscript ·1 represents the first recurrence) and generates a new graph G′1.

At this point, current works typically overlay graph properties like degree distribution,

assortativity, etc. to see how well G matches G′1. We go a step further and ask if the

new graph G′1 holds sufficient information to be used as reference itself. So, from G′1

we learn a new model Θ2 in order to generate a second-level graph G′2. We repeat

this recursive “learn a model from the model”-process k times, and compare G′k with

the original graph.

Figure 5.1 shows an example of the infinity mirror test for the Kronecker model. In

this example some real world graph G is provided by the user. From G a model Θ1 is

fit, which is used to generate a new graph G′1. Of course, G′1 is only an approximation

of G and is therefore slightly different. In the second recurrence a new model Θ2 is
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fit from G′1 and used to generate a new graph G′2. This continues recursively k times.

With the infinity mirror test, our hypothetical, perfect model is perfectly robust

and immune to error. A hypothetical “bad” model would quickly degenerate into

an unrecognizable graph after only a few recurrences. Despite their accurate per-

formance, existing models are far from perfect. We expect to see that all models

degenerate as the number of recurrences grow. The question is: how quickly do the

models degenerate and how bad do the graphs become?

5.4 Experiments

In order to get a holistic and varied view of the robustness of various graph

generators, we consider real-world networks that exhibit properties that are both

common to many networks across different fields, but also have certain distinctive

properties.

The six real world networks considered in this paper are described in Table. 5.1.

The networks vary in their number of vertices and edges as indicated, but also vary

in clustering coefficient, degree distribution and many other graph properties. Specif-

ically, C. elegans is the neural network of the roundworm of the named species [48];

the Power grid graph is the connectivity of the power grid in the Western United

States [111]; the Enron graph is the email correspondence graph of the now defunct

Enron corporation [55]; the ArXiv GR-QC graph is the co-authorship graph extracted

from the General Relativity and Quantum Cosmology section of ArXiv; the Internet

router graph is created from traffic flows through Internet peers; and, finally, DBLP

is the co-authorship graph from the DBLP dataset. All datasets were downloaded

from the SNAP and KONECT dataset repositories.

On each of the six real world graphs, we recursively applied the Kronecker, Block

Two-Level Erdos-Renyi (BTER), Exponential Random Graph (ERGM) and Chung-
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Figure 5.3: Eigenvector centrality. G shown in blue. Results for recurrences G′2, G
′
5,

G′8 and G′10 in lighter and lighter shades of red showing eigenvector centrality for each
network node. Degeneration is shown by increasing deviation from G’s eigenvector
centrality signature.

Lu (CL) models to a depth of k=10.

Figures 5.2, 5.3, 5.4, and 5.5 show the results of the Chung-Lu, BTER and Kro-

necker graphs respectively.

Different graph generators will model and produce graphs according to their own

internal biases. Judging the performance of the generated graphs typically involves

comparing various properties of the new graph with the original graph. In Figs. 5.2–

5.5 we show the plots of the degree distribution, eigenvector centrality, hop plots and

graphlet correction distance. Each subplot shows the original graph in blue and the

generated graphs G′2, G
′
5, G

′
8, G

′
10 in increasingly lighter shades of red.

In the remainder of this section we will examine the results one metric at a time,

i.e., figure-by-figure.

Degree Distribution. The degree distribution of a graph is the ordered distribu-

tion of the number of edges connecting to a particular vertex. Barabási and Albert
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Figure 5.4: Hop plot. G shown in blue. Results for recurrences G′2, G
′
5, G

′
8 and

G′10 in lighter and lighter shades of red. Degeneration is observed when recurrences
increasingly deviate from G.

initially discovered that the degree distribution of many real world graphs follows a

heavy-tailed power law distribution such that the number of nodes Nd ∝ d−γ where

γ > 0 and γ, called the power law exponent, is typically between 2 and 3 [9].

Figure 5.2 shows the degree distribution of Chung Lu, BTER and Kronecker

row-by-row for each of the six data sets. The Kronecker generator was unable to

model the C. elegans graph because C. elegans does not have a power-law degree

distribution, thus those results are absent. These plots are drawn with the original

graph G in blue first, then G′2, G
′
5, G

′
8 and G′10 are overlaid on top in that order; as

a result, light-red plots often elide dark-red or blue plots indicating accurate results

and non-degeneration. In general, we find that the degree distributions hold mostly

steady throughout all 10 recurrences. One exception is present in the Power grid

dataset for all three graph generators where the later graphs lose density in the head

of their degree distribution. But overall the results are surprising stable.
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Figure 5.5: Graphlet Correlation Distance. All recurrences are shown for Chung Lu,
BTER and Kronecker graph generators. Lower is better. Degeneration is indicated
by a rise in the GCD values as the recurrences increase.

TABLE 5.1

Real networks

Dataset Name Nodes Edges

C. elegans neural (male) 269 2,965

Power grid 4,941 6,594

ArXiv GR-QC 5,242 14,496

Internet Routers 6,474 13,895

Enron Emails 36,692 183,831

DBLP 317,080 1,049,866

Eigenvector Centrality. The principal eigenvector is often associated with the

centrality or “value” of each vertex in the network, where high values indicate an

important or central vertex and lower values indicate the opposite. A skewed dis-

tribution points to a relatively few “celebrity” vertices and many common nodes.

The principal eigenvector value for each vertex is also closely associated with the

PageRank and degree value for each node.

Figure 5.3 shows an ordering of nodes based on their eigenvector centrality. Again,

the results of Kronecker on C. elegans is absent. With the eigenvector centrality
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metric we see a clear case of model degeneration in several data sets, but stability

in others. The arXiv graph degenerated in Chung-Lu and BTER, but was stable

in Kronecker. On the other hand, the Power grid and Routers graph had only a

slight degeneration with Chung Lu and BTER models, but severe problems with the

Kronecker model.

Hop Plot. The hop plot of a graph shows the number of vertex-pairs that are

reachable within x hops. The hop plot, therefore, is another way to view how quickly a

vertex’s neighborhood grows as the number of hops increases. As in related work [69]

we generate a hop plot by picking 50 random nodes and perform a breadth first

traversal over each graph.

Figure 5.3 shows the hop plots of each graph, model and recurrence level. Again

we find mixed results. Model degeneration is clear in the arXiv results for Chung

Lu and BTER: we see a consistent flattening of the hop plot line recurrence-level

increases. Yet the arXiv results are consistent with the Kronecker model.

The hop plot results are quite surprising in many cases. All of the models severely

underestimate the shape of the power grid and routers graphs even in the first gen-

eration (not shown).

Of the many topological characteristics that could be compared, researchers and

practitioners typically look at a network’s global properties as in Figs 5.2–5.3. Al-

though these metrics can be valuable, they do not completely test the performance

of a graph generator.

In our view, a large network is essentially the combination of many small sub-

networks. Recent work has found that the global properties are merely products of a

graph’s local properties, in particular, graphlet distributions [91]. As a result, graphlet

counting [5, 76, 108] and related comparison metrics [113] comprise the local-side of

graph generator performance.

Thus a complete comparison of graph generator performance ought to include
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Figure 5.6. Clustering Coefficient. G is in blue. Results for recurrences G′2,
G′5, G

′
8 and G′10 in lighter and lighter shades of red. Degeneration is
observed when recurrences increasingly deviate from G.

both local and global metrics. In other words, not only should a generated graph

have the same degree distribution, hop plot, etc. as the original graph, but the new

graph should also have the same number of triangles, squares, 4-cliques, etc. as the

original graph.

There is mounting evidence which argues that the graphlet distribution is the most

complete way to measure the similarity between two graphs [91, 108]. The graphlet

distribution succinctly describes the distribution of small, local substructures that

compose the overall graph and therefore more completely represents the details of

what a graph “looks like.” Furthermore, it is possible for two very dissimilar graphs to

have the same degree distributions, hop plots, etc., but it is difficult for two dissimilar

graphs to fool a comparison with the graphlet distribution.
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Graphlet Correlation Distance

Recent work from systems biology has identified a new metric called the Graphlet

Correlation Distance (GCD). Simply put, the GCD computes the distance between

two graphlet correlation matrices – one matrix for each graph [113]. Because GCD is

a distance metric, lower values are better. The GCD can range from [0,+∞], where

the GCD is 0 if the two graphs are isomorphic.

Figure 5.5 shows the GCD of each recurrence level. Because GCD is a distance,

there is no blue line to compare against; instead, we can view degeneracy as an

increase in the GCD as the recurrences increase. Again, results from the Kronecker

model are absent for C. elegans. As expected, we see that almost all of the models

show degeneration on almost all graphs.

Kronecker’s GCD results show that in some cases the GCD is slightly reduced, but

in general its graphs deviate dramatically from the original. Chung-Lu and BTER

show signs of better network alignment when learning a model from C. elegans. This

result highlights biased assumptions in the Chung Lu and BTER models that seem

to favor networks of this kind while struggling to handle networks with power-law

degree distributions.

Clustering Coefficients. A node’s clustering coefficient is a measure of how

well connected a vertex’s neighbors are. Specifically, a nodes’s clustering coefficient,

i.e., the local clustering coefficient, is the number of edges that exist in a node’s ego-

network divided by the total number of nodes possible in the ego-network. The global

clustering coefficient is simply the average of all the local clustering coefficients.

The Chung Lu generator has been shown to model the degree distribution of

some input graph, and our results bare this out. Eigenvector centrality, hop plot

and graphlet correlation distances are also reasonably well modelled by the Chung

Lu generator. However, Pfeiffer et al. recently showed that the standard Chung

Lu generator does not well model a graph’s local clustering coefficients; so they
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Figure 5.7. Assortativity. G is in blue. Results for recurrences G′2, G
′
5, G

′
8

and G′10 in lighter and lighter shades of red. Degeneration is observed when
recurrences increasingly deviate from G.

introduced the Transitive Chung Lu generator as an adaptation to the standard

model [88].

Assortativity. The assortativity of a network is its tendency to have edges be-

tween nodes with similar degree. For example, if high degree nodes primarily link to

other high degree nodes, and low degree nodes primarily link to low degree nodes,

then the network’s overall assortativity score will be high, and vice versa. The lo-

cal assortativity for each node is the amount, positive or negative, that the node

contributes to the overall global assortativity [85].

Like in the case with the clustering coefficient, the standard Chung Lu model

was found to not accurately model the assortativity of real world graphs. Mussmann

et al. developed a Chung Lu with Binning adaptation that was shown to generate
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graphs with appropriate assortativity [79]. Even better is that the transitive and

binning models can be combined to create a Transitive Chung Lu with Binning

generator that models the degree distribution, clustering coefficient and assortativity

of some input graph.

But the question remains, are these new generators robust?

We applied the infinity mirror test to the 6 graph generators, 3 original and

3 Chung Lu adaptations on the Routers dataset. All tests were performed on all

graphs for all generators, but cannot all be shown because of space limitations. Fig-

ure 5.6 shows the clustering coefficient results. We find that transitive Chung Lu

does nominally better than standard Chung Lu, but in all cases, the 5th, 8th and

10th recurrences seem to drift away (up and to the right) from original graph’s plots

demonstrating slight model degeneration as expressed through clustering coefficient.

The Kronecker generator did rather poorly in this test. The Kronecker generator

didn’t seem to have a degeneration pattern, but was simply inconsistent.

The assortativity results are shown in Figure 5.7. We do not see any noticeable

improvement in assortativity between the standard Chung Lu and the Chung Lu

with Binning generators. We again find that the 5th, 8th and 10th recurrences seem

to drift away (downward) from the original graph’s assortativity plots demonstrating

slight model degeneration as expressed through assortativity. The Kronecker graph

also performed poorly on this test, although it is unclear what the nature of the

degeneration is.

5.5 Discussion and Conclusions

In the present work we introduced the infinity mirror test for graph generator

robustness. This test operates by recursively generating a graph and fitting a model

to the newly generated graph. A perfect graph generator would have no deviation

from the original or ideal graph, however the implicit biases and assumptions that are
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cooked into the various models are exaggerated by the infinity mirror test allowing

for new insights that were not available before.

Although the infinity mirror test shows that certain graph models show degen-

eration of certain properties in certain circumstances, it is more important to gain

insight from how a model is degenerating in order to understand their failures and

make improvements. For example, the BTER results in Figs 5.2-5.4 shows via the

degree, eigenvector and hop plots that the BTER-generated graphs tend to become

more spread out, with fewer and fewer cross-graph links, which, in retrospect, seems

reasonable because of the siloed way in which BTER computes its model. Conversely,

Chung Lu tends to generate graphs with an increasingly well connected core (indi-

cated by the left-skewed hop plots and overestimated eigenvector centrality), but

that also have an increasingly large portion of the generated graph that is sparsely

connected (indicated by the odd shaped tail in the right-hand side of the eigenvector

centrality plots).

A better understanding of how the model degenerates will shed light on the inher-

ent limitations. We hope that researchers and practitioners can consider using this

method in order to understand the biases in their models and therefore create more

robust graph generators in the future.
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CHAPTER 6

TREE DECOMPOSITION

6.1 Introduction

The underlying mechanism of how social networks grow or, more generally, how

real-world networks grow or evolve is a core area of research in computer science,

mathematics, engineering, and physics. A recently introduced generative network

modeling framework, Hyperedge Replacement Grammars (HRG), explores network

structure to derive a set of replacement rules. These rules are also known as graph

rewriting rules or as will be used throughout this work, production rules. These rules

represent the grammars of the graph in question. Applying these recursively, we grow

graphs with characteristic properties similar to the input graph. The rules derived

are in response to the variable-elimination algorithm used in the decomposition step.

The research question of interest is, what is the diversity of the productions rules we

end up with in choosing the variable elimination algorithm during the decomposition

step? We are motivated to explore this question because we want to examine if

the rules are invariant to the choice of algorithms in this critical step. The original

implementation of the HRG graph model yields TD characterized by relatively low

treewidth (tw). In graph theory, tw is the size of the largest vertex set in a tree

decomposition of a given graph. Vertex sets are also characterized as cliques, thus

twcomes or is computed from the size of the largest clique in a chordal completion

of the graph.

A key assumption in the tree decomposition step is computing tree decompositions

with low (or close to optimal) tw. The motivation behind low tw is that with struc-
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tures such as these trees, we can solve problems in probabilistic inference, constraint

satisfaction, and matrix decomposition [41, 58, 58]. Unfolding how these structures

are computed as a function of tree decomposition heuristics will be explored to gain

better understanding on the structural patterns that underlie community and other

network properties inherent to a diverse set of networks such as social, biological,

and collaboration networks.

6.1.1 Core problem definition

We study the problem of graph decomposition. We examine patterns graph topol-

ogy found in the resulting clique-trees (CT). The purpose is to infer a model for the

given graph or a class of graphs. We have described how HRG takes the output

of a tree decomposition and construct production rules, a process analogous to the

productions derived in context-free grammars [4]. Formally, for any static graph, i.e.,

a graphical representation of any complex system, let G = (V,E) be the graph ob-

served and H = (X,E) its hypergraph. The graph H∗ = (X,E) is obtained through

stochastic application of the production rules. Graph generation is split into two pro-

cedures, inference of HRG production rules and stochastic application of the graph

grammars. The inference step may be visualized as follows, H
TD(H,`)−−−−−→ CT

HRG−−−→ PR

and the graph generation step GHRG(PR, ν) → H∗, where ν is the desired graph

order (number of vertices), aG is the hyperedge replacement graph grammar, and ` is

the variable elimination algorithm that characterizes the resulting clique-tree (CT).

Synthetic graphs H∗ reflect many of the network properties inherent in the reference

or input graph. We interchangeably use the terms reference graph and input graph

throughout this work when referring to a real-world graph.

Earlier work utilized the maximum cardinality search variable elimination algo-

rithm described by Tarjan and Yannakakis [106] in the tree decomposition step. Thus,

one of the open questions in the HRG graph model is how the choice of tree decompo-
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sition algorithm biases or affects the topology of the graph-fragment patterns used in

the productions inferred. We answer this question and leverage multiple tree decom-

positions to hone in on patterns that might be invariant to tree decomposition and

may offer insight into the fundamental patterns that contribute the global structure

of a graphs.

We are interested in examining how the choice of ` contributes to the resulting

characteristics of the CT and thus to the resulting graph grammar. Construction of

the graph grammar is biased on the choice of variable elimination algorithm.

6.1.2 Outline of this work

In Section 6.2 we examine the background literature. In Section 6.4 we outline

specific research questions and describe experiments and methods used to help answer

them. Details of the results and a brief discussion on what conclusions we can draw

are presented in Section 6.5 and conclude by looking ahead to some future direction

in 6.5.2.

6.2 Background information and related work

A great deal of work has focused on applications of the algorithms that under-

lies tree decomposition. The concept of tree decomposition is also known by other

other names depending on the specific branch of computer science and they include

clique-trees, cluster graphs, and junction trees. This work examines the use of tree

decomposition heuristics for deriving HRG’s production rules characterizing the fea-

tures of the graph model.

Existing algorithms for constructing TDs range from those shown to be practically

intractable due to their complexity to those characterized as computational for em-

ploying heuristic approaches whose deviation from optimality is guaranteed. Shoikhet

and Geiger [100] developed a computational (i.e., practical) algorithm, QuickTree,
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that can optimally triangulate graphs in a reasonable amount of time. This algorithm

saw usefulness in problems in Bayesian inference and clique-tree inference algorithms.

Gogate and Dechter [36] developed QuickBB, a branch and bound (BB) algorithm for

computing the twof undirected graphs. BB search algorithms fuel algorithm design

trends in discrete and combinatorial optimization.

Jones et al., describe very similar work where they extracted grammars using

tree decomposition. Their work focuses on a class of tree decomposition called edge-

mapped TD [49]. This tree decomposition is extended to use a topological sort that

produces clique trees like those in HRG. However, they evaluate the model in contrast

to other forms of the tree decomposition yielding linear trees. They rely on a measure

of perplexity (akin to the entropy of text) to evaluate the production rules. Their

work does not generate graphs using the derived rules and their approach is tested

only on a series of graphs that have an average of 15 vertices as well as edges.

lhs}i lhs}j{

test rhs if they are 
isomorphic graphoids 

mcs

mcsm

mind

minf

mmd

lexm

H CT
k

TD (var. elim) Prod. Rules

lexm

mcs

mcsm

mind

minf

mmd

...

select pair of prod. rules

{
H*

H*

N/M

N/M

PR

PR

Figure 6.1. Proposed methodology: Tree Decomposition, clique-tree (CT),
Production Rules (PR)
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6.2.1 Tree Decomposition Influence on HRG

The influence of tree decomposition on graph grammars is explored to shed light

on the bias or the assumptions inherent in the underlying algorithms. All graphs

can be decomposed (though not uniquely) into a clique-tree, also known as a tree

decomposition, junction tree, join tree, intersection tree, or cluster graph. clique-trees

are found through a simple ordering the vertices in the input put graph. Computing

a perfect ordering ensures graph chordality and finding this perfect ordering relies on

maximum cardinality search or lexicographical BFS (lexBFS) algorithms. Minimal

vertex separators is another algorithm for computing clique-trees are examined in

this paper.

Constant factor approximation algorithms typically used for treewidth problems

include triangulation heuristic algorithms such as min-degree, max-cardinality search,

min fill, lexBFS, and min-vertex separators, we expand on these next with more

detail. Treewidth (tw) is defined as a property for clique trees or cluster graphs,

measuring the ‘’tree-likeness” of the reference graph.

6.3 Methods and proposed work

6.3.1 Tree Decomposition and Variable Elimination

The question of interest is how does tree decomposition contributes, affects, or

biases the productions rules derived from the input graph? To address this we focus

on deriving rules using variations of tree decomposition. In the decomposition tree

step, a Adcock et al. [1] have developed tree decomposition that relies on different

variable elimination ordering algorithms.

A battery of variable elimination heuristics will be used in the tree decomposition

step. These heuristics include maximum cardinality search (MCS), minimum triangu-

lation of H (MCS-M) [11], lexicographic search with minimal ordering (LEX M) [95],
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TABLE 6.1

Summary of variable elimination algorithms used in this study.

VE Heuristic Description

MCS Maximum cardinality search is a simple heuristic that works
well on chordal graphs.

MCSM Minimum triangulation extension to MCS.

Min Degree Minimum degree is a well known general-purpose ordering
scheme and is widely used in sparse matrix computation.

Min Fill Minimum fill consists of greedy node elimination with the fewest
edges are added breaking ties arbitrarily.

Lex-M Derived from lexicographic breadth-first search for minimal tri-
angulation.

MMD Multiple minimum degree

minimum fill-in (MINF), Minimum degree (MIND), and Multiple Minimum Degree

(MMD) [74]. These heuristics an others are described by Kemazi and Poole [52].

However, it must be noted that these heuristics do not add up the complete list of

available algorithms [12, 87], but we choose this for this work.

The baseline tree decomposition variable elimination algorithm allowing or facili-

tating transformation of an input graph into clique-tree is MCS. In our earlier work,

the HRG model uses Tarjan and Yanakakis’ MCS algorithm. We examine and evalu-

ate clique trees from the heuristics in Table 6.1. We select a diverse set of real world

networks. Table 6.2 shows some of the properties of these graphs exploring others as

well in detail next.

Answering the core question explored in this work requires us to examine some

properties of the clique trees. We start with (tw), a graph feature or property mea-
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suring how “treelike” a tree is.

6.3.2 Datasets

A number of empirical networks, otherwise known as real-world networks, are

used to evaluate the different heuristics. We are interested in variable elimination

and their effect on graph grammars. These networks vary in the number of nodes and

edges. We consider small and large networks push the limits of tree decomposition,

but more importantly we want a wide range and diverse set of graph grammars

(graph fragments) to understand how the POE contributes to the network model.

These networks are also characterized by other properties that we hope HRG is able

to model accurately.

Small Network Datasets. Highland tribes (Gama) is a social network of tribes of the

Gahuku-Gama alliance structure found in Eastern Central Highlands of New Guinea.

Zachary’s Karate club (Karate) is a snapshot of a university karate club studied by

Wayne Zachary. All real-world networks are public datasets [64, 68].

Larger Network Datasets. EuroRoad is an infrastructure network of Europe’s roads

where nodes are cities and edges represent the road that connects them. CollegeMsg is

a network of private message between college students using an online social network

at the University of California, Irvine. Table 6.2 illustrates the size of the graphs

used in the experimental section.

6.4 Experiments and Results

One of they ways we can inspect how the choice of variable elimination algorithm

affects the production rules is to generate synthetic graphs and use a graph alignment
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TABLE 6.2

Real-world networks

Datasets nodes (n) edges (m) Avg. degree (k̄)

Tribes (Gama) 16 58 7.25

Les Miserables 77 254 6.60

Hypertext 113 2196 38.87

arenas-jazz 198 2742 27.70

Contact 274 2124 15.50

email-Eu-core 309 1938 12.54

Infectious 410 2765 13.49

EuroRoad 1174 1417 2.41

College Msg 1899 13838 14.57

test to measure graphlet distance between graphs. Figure 6.2 shows that half the

datasets show no significant difference in their GCD score. Complete GCD results

are presented in Tab. 6.5.

6.4.1 Evaluation of Tree Decompositions

Methods of evaluating tree decomposition include tw. Derived productions rules

undergo a isomorphic test to find subsets used to grow synthetic graphs. The re-

sulting graph get the bulk of the metrics. These graphs will be evaluated based on

degree distribution, clustering coefficients, hop-plot, and graphlet correlation distance

(GCD).

One of our first goals is to evaluate HRG’s variable elimination method of the

resulting CT . Each dataset is transformed into a clique tree, the tree is binarized,

only them we derive the production rules. The tree decomposition is obtained using
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TABLE 6.3

tw as a function of variable elimination algorithm

Treewidth (tw)

Dataset mcs∗ mcs lexm mcsm mind minf mmd

µ (σ)

LesMis 9 (0) 11 9 11 9 9 9

contact 40 42 43 43 50 40 40

arenas-jazz 59 (0) 88 77 81 104 59 73

pdzbase 6 9 12 13 6 6 6

ucforum 126 326 361 341 282 276 279

Hypertext 76 (0) 80 89 89 76 76 76

Infectious 39 (0) 65 56 128 42 40 49

emailEuCore 34 (0) 41 46 45 35 34 35

EuroRoad 6.6 (2.6) 42 30 48 19 16 16

College Msg 87.6 (20.3) 459 602 543 404 394 403

the tool INDDGO [1] while each variable elimination heuristic is specified as one of

the arguments in the execution.

6.4.2 Treewidth

Table 6.3 shows the (tw) that results from tree decomposition using different

variable elimination algorithms. The first column shows the tw computed using

the HRG model. We learn that our implementation of mcs is among the variable

elimination algorithms that yield clique-trees with the smallest tw and that the next

best algorithm is is minf . The baseline algorithm for TD is a Python implementation
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Figure 6.2. Graphlet correlation distance on graphs generated using
productions derived from clique-trees computed with MCS (baseline) and

MinF.

of QuickBB, which relies on mcs. All other elimination orderings will be computed

using INDDGO [40].

6.4.3 Production Rules

Production rules are characterized by by the number of non-terminal nodes in the

left-hand side (LHS) of the rule.A matrix showing the percentage of overlap between

different.

6.4.4 Isomorphic Overlap

We are interested in patterns found in the various production rules. Each set of

production rules set are independently derived. However, production rules still share
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TABLE 6.4

Production rules overlap: email-Eu-core

mcs mind mcsm lexm mmd minf

mcs - 0.182 0.182 0.161 0.194 0.186

mind - 0.207 0.159 0.220 0.209

mcsm - 0.180 0.201 0.191

lexm - 0.157 0.155

mmd - 0.184

minf -

Figure 6.3. Isomorphic overlap via Jaccard Similarity

dependence on the source graph even if they are derived using different TD schemes.

We examine graph structure as found in RHS rules. We use both approximate and

complete isomorphic tests. We select rules that have the same number of terminal

objects in the LHS. We compute Jaccard similarity to assess the ratio of isomorphic

rules over a range of TD. Triangle heat dots show the Jaccard similarity between

any pair of production rules. This result implies that certain variable elimination

methods share an affinity. We intend to exploit this affinity to test if the intersection

of isomorphic graph-fragments (multi-graph instances of the RHS of production)

yields a smaller set of production rules that generates graphs.
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6.4.5 Isomorphic graph-fragments

A subset of production rules from the concatenation of rules derived using several

different tree decompositions is possible using isomorphic graph-fragment tests. This

approach lets us hone in on automatically produced or derived rules. Some graph-

fragments are observed to be found or produced by different tree decomposition

algorithms. This collection of PHRG rules lead to productions that can generating

graphs using a stochastic application of the rules. Fig 6.5 show the number of rules

in a concatenated rules set (blue) and the subset resulting from isomorphic patterns.

These smaller subset of production rules captures sufficient information to generate

synthetic graphs. In Fig. 6.5 we show both the rules subset from the isomorphic

test in contrast to the union of the rules for real-world networks and for random

(Barabasi-Albert) graphs.
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Figure 6.4. Degree distribution. (A) Highland tribes graph, (B) GCD, (C)
Degree CDF, (D) Degree distribution, (E) Clustering coefficients, (F)

Hop-plot

6.4.6 Generalization to Classes of Graphs

Formative patterns playing a key role in how networks grow might be found to

be consistent across similar class of networks. And through a range of networks
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Figure 6.5. Union and set intersection of the production rules derived using
different variable elimination methods.

generated by the Barabasi-Albert random graph model we probe the usefulness of

patterns found through a battery of tree decomposition algorithms. We want to

examine if the production rules inferred from these artificially generated graphs hold

the power to characterize the degree distribution in a single class of well defined

graphs.

We generate random graphs of various sizes using the Barabasi-Albert model and

we process each graph. In other words, we infer as set of production rules using the

same set of tree decomposition algorithms used throughout our experimental setup.

Furthermore, we hone in on RHS graph-fragments that are isomorphic regardless of

the TD algorithm and test if this set holds sufficient information to generate similar

graphs.

6.5 Conclusions

Generative network models using hyperedge replacement grammars are power

tool in network science. The HRG graph model preserves many of the input graph’s

network properties such as degree distribution and others. One open question on

the HRG generative model is how the choice of tree decomposition affects the in-

ferred model. We examine a battery of tree decomposition algorithms to examine

the production rules and find an answer to this question. Our initial experimental

results highlight two important findings: not all variable elimination algorithms yield

clique trees, and of those variable elimination algorithms that yield clique trees not

all derived production rules fire, i.e., can generate graphs.
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TABLE 6.5

Clique-trees using variable elimination heuristics

Graphlet Correlation Distance µ(σ)

Dataset mcs lexm mind mcsm minf mmd

LesMis 1.46 (0.16) 1.6 (0.16) 1.7 (0.2) 1.8 (0.13) 1.4 (0.15) 1.774 (0.280)

ucforum 0.985 (0.093) 1.030 (0.098) 1.198 (0.093) 0.948 (0.113) 1.242 (0.107) 1.002 (0.106)

Hypertext 0.707 (0.137) 0.582 (0.112) 0.606 (0.143) 0.576 (0.137) 0.661 (0.154) 0.653 (0.177)

Infectious 0.760 (0.060) 0.889 (0.083) 0.824 (0.060) 0.684 (0.060) 0.857 (0.0613) 0.763 (0.085)

jazz 1.2 (0.1) 0.98 (0.03) 1.2 (1.6) 0.75 (0.04) 1.11 (0.09) 0.977 (0.083)

pdzbase 1.8 (1.3) 2.2 (1.5) 4.0 (.40) 3.2 (1.3) 3.8 (0.7) 2.7 (0.27)

emailEuCore 3.0456 (0.118) 2.554 (0.100) 2.552 (0.248) 2.491 (0.151) 2.862 (0.269) 2.679 (0.267)

EuroRoad 1.633 (1.059) 2.300 (1.237) 2.820 (1.231) 2.728 (1.239) 3.003 (1.186) 3.224 (1.102)

College Msg 3.276 (0.275) 0.835 (0.036) 0.605 (0.047) 0.773 (0.059) 0.773 (0.059)

Where the derived production rules do fire, we explore the intersection of rules.

If we further examine where the rules, or graph fragments, intersect we test if these

subsets are smaller than any one individual rules set and test the set’s ability to fire.

When this small set of production rules can fire, we test the set to grow graphs.

Our conclusion is that there are latent graph fragments with structure that when

combined are compact enough to grow graphs. Using multiple variable elimination

algorithms during the tree decomposition step flushes out these graph fragments.

This finding hints to the need for a optimal method of finding a more compact set of

production rules.

6.5.1 Limitations

The challenges in this approach is the run-time increase required for each variable

elimination algorithm. This naive approach does not offer a guarantee that we will

end up production rules sets guaranteed to fire. The second limitation concerns

scalability. An increase in the number of times we perform a tree decomposition given
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Figure 6.6. Network properties

different variable elimination algorithms increases the complexity of this intermediate

step. Processing large graphs increases run-time, but we can not guarantee the tree

decomposition will yield viable production rules. The size of the graph is address

in this work by sampling from the reference graph. These limitations, again hint

at the need for new approaches combining smart graph sampling and optimization
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to an ensemble of variable elimination yielding richer rules compared to the naive

approach.

6.5.2 Future Direction

Potential directions for this work include looking into the use of perplexity, a

measure of entropy of a subgraph, to evaluate derived HRG models. Especially as we

improve on the on the naive HRG implementation. Another future direction for this

work may explore deeper an ensemble tree decomposition that relies on finding a fast

and practical variable elimination methodology that guarantees both, a smaller subset

of rules and rules that can fire. These future directions may lead to the development

of new tools for natural language processing and graph mining applications.
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CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

7.1 Summary

Here we have explored and evaluated principled techniques that learn the LEGO-

like building blocks of real-world networks. We did so by exploiting techniques at

the overlap where graph theory meets formal language theory. Building on these

ideas, pioneered by my collaborators Tim Weninger and David Chiang, we examined

graph decomposition, grammar extraction, model inference, and analysis of network

patterns.

We focused on advancing HRG, a graph rewriting formalism, to extract graph

grammars from any class of connected graphs. This model was able to learn the

building blocks of networks and leveraged the generating power of HRG to grow

graphs that exhibit, or maintain, the network properties of interest found in the

reference graph. The specific themes covered include model inference and stochastic

graph generation, HRG fixed-size graph generation, measures of model resilience,

and model bias resulting from the use of different tree decomposition algorithms. We

expanded on these themes below in more detail.

• HRG Growing graphs. Initial implementation derives a HRG, a set of pro-
duction rules. Chapter 3 described the initial implementation of HRG as a
graph model which showed the principled approach to transforming graphs
into trees, deriving the graph grammar, and growing graphs using a stochastic
growth algorithm.

• Probabilistic HRG. Improvements to the HRG model where the order (or
size, in terms of the number of nodes) was specified. Chapter 4, described a new
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procedure for growing graphs to address a limitation in the original implemen-
tation. Although the generated graphs have the same mean size as the original
graph, the variance was too high to be useful. We used dynamic programming
to sample a graph with specified size to illustrate this concept.

• Infinity mirror tests model degeneration. A new metric of model robust-
ness examined model degeneration in Chapter 5: infinity mirror test. This pro-
cedure examined any graph generator’s output and repeatedly fitted a model to
the new output to see how well the model captured sufficient features to recon-
struct graphs. We saw that after a few recursive runs some of the existing graph
models tend to degenerate. Some models quickly lost the necessary features the
model relies on to generate graphs with many of properties in the original graph.

• Graph grammar bias. We explored the core of the tree decomposition step,
a critical step during model inference. Specifically, how the production rules
are biased during tree decomposition, by examining the algorithms involved in
transforming the input graph into tree-like graphs. Chapter 6 showed an exami-
nation of various tree decomposition algorithms. By studying the rules between
sets, we evaluated various production rules from different tree decomposition
algorithms. Moreover, where we had viable rules, we generated graphs allowing
us to study the quality of the synthetic graph’s rules produced in contrast to
the input graph.

7.2 Vision and Future Work

By developing algorithms for graph generation models, we elucidate underlying

mechanisms contributing to network growth. Understanding local patterns of large

networks can lead to high impact applications, novel mathematical abstractions, and

to the development of sorely needed tools for the advancement of field today. The

concepts explored here naturally opens up new ground for further exploration.

7.2.1 Analytic Methods for the Network Properties of HRG Graphs

Analytically exploring the properties of HRG graphs is difficult, but important.

Showing that HRG model yields graphs with properties that are analytically tractable

might yield surprising results. Network properties such as degree distribution, di-
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ameter, and other spectral properties of the graphs should be explored further to

determine if the grammar patterns model generated structures exhibit multinomial

degree distribution and or multinomial eigenvector distribution as is the case with

Kronecker graphs. For example, in grammars obtained from connected graphs, can

we analytically show that connected (or disconnected) graphs are possible?

7.2.2 Applications to Deep Learning

Exploiting the richness of the grammars for use in machine learning offers practi-

cal applications of the HRG model. On possible research path is, designing recurrent

neural network controllers that optimize the selection of rules that form new produc-

tion rules sets to generate neural network architectures. We evaluate the architecture

on deep learning task and if it performs well, we feed back the production rules to the

recurrent neural network controller. This approach could help contribute to better

(engineered) high-performing neural network architectures over time [82, 102, 114].

7.2.3 Applications to Graph Engines

Our HRG model offers two potential applications in pyramid graph algorithms.

First, to explore using hyperedge replacement for layer-to-layer contraction. Second,

to investigate extracting rules set for selecting contraction algorithms according to

the graph class in question. In combinatorial optimization tasks, approximating al-

gorithms offer solutions to otherwise NP-hard or NP-Complete problems, if applied

to a decision problem. A pyramid algorithm would be one example. In human and

computer vision literature, these algorithms are well utilized, but only more recently

have been applied to problem-solving tasks. Multi-resolution graph pyramids, where

the bottom of the pyramid contains the entire graph and successive layers have com-

pressed (or contracted) graph information reduces the size of the input as we climb

up the pyramid and reach a point where a combinatorial solution to the problem is
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feasible [13, 42, 78, 90]. How graphs contract from one pyramid level to the next

depends on the class to which the network belongs.
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